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Preface

Welcome to the proceedings of the inaugural 2024 co-
hort of the BeyondAlI: Introduction to Al and Research
(BeyondAI) programme, organised by ThinkingBeyond
Education from October 7th to December 6th, 2024.

This year, the programme brought together thirty ex-
ceptional young researchers, aged 14-22, from across the
globe. Each participant was selected through a highly
competitive process, standing out amongst 412 applicants
from over 45 countries. To secure a place, candidates first
had to complete the rigorous Preparation Stage as part of
their application. Only those who demonstrated strong
independent learning skills and mastery of the founda-
tional topics progressed to the Course Stage, where they
further honed their knowledge before embarking on their
research projects under the guidance of an academic men-
tor during the Research Stage.

The Preparation Stage, spanning six weeks, formed
the cornerstone of the selection process. Depending on
their prior educational background, applicants engaged
in self-directed study to build or reinforce their under-
standing of Linear Algebra, Calculus, Multivariable Cal-
culus, Python programming, and IXTEXtypesetting, while
also exploring fundamental Al concepts through curated
resources. Only those who demonstrated sufficient profi-
ciency in the basics across all required disciplines earned
admission into the programme.

During the four-week Course Stage, participants ex-

plored Machine Learning from both research and engi-
neering perspectives. The research-focused component
emphasised conceptual understanding and mathematical
modeling, introducing core ideas in a way accessible to
newcomers. Meanwhile, the engineering component fo-
cused on the numerical implementation of these models,
bridging the gap between theory and practical applica-
tion.

Beyond building subject-specific knowledge and skills,
the programme introduced participants to the world of
academic research. A series of workshops equipped
them with essential research skills, including schedul-
ing and time management, effective learning strategies,
personal knowledge management, project management,
scientific writing, and research presentation. Partici-
pants worked individually and collaboratively, undertak-
ing tasks such as writing mock research papers, designing
research posters, and coding their own multilayer percep-
trons (MLPs) from scratch.

Those who successfully completed the Course Stage
advanced to the five-week-long Research Stage. Working
in teams of two, participants delved into Machine Learn-
ing projects under the mentorship of experienced aca-
demics. Alongside their research, they attended expert-
led talks on advanced topics and real-world applications,
further broadening their understanding of the field.

Machine Learning and Artificial Intelligence are


https://thinkingbeyond.education
https://thinkingbeyond.education

rapidly evolving disciplines with the potential to trans-
form industries and redefine problem-solving across do-
mains. BeyondAl serves as a vital platform for nurturing
young talent, providing them with a strong foundation in
Al exposure to academic research, and essential skills for
intellectual growth. Our mission is to empower partici-
pants by fostering their expertise and curiosity, equipping
them with the knowledge and experience necessary to ex-
cel as future subject experts, researchers and innovators.

We extend our deepest gratitude to the ThinkingBe-
yond team and the many volunteers whose dedication
made this programme possible. Special thanks go to our
academic mentors: Dr. Devendra Singh Dhami, Dr. He-
lena Bahrami, Dr. Filip Bar, Dr. Matej Cief, Adeyemi
Damilare Adeoye, MSc, Emilie Gregoire, MSc, Barbora
Barancikova, MSc, and Matthew Pugh, BE. Their guid-
ance and support were invaluable in ensuring the success
of our participants. We also extend our appreciation to
the participants themselves, whose dedication and hard
work form the foundation of these proceedings.

The research projects presented in this volume re-
flect a diverse range of topics and applications, from

il

fundamental studies on Deep Learning optimisers and
the phenomenon of Double Descent to explorations of
advanced architectures such as Geometric Clifford Al-
gebra Networks. These projects represent a significant
leap beyond the Course Stage, posing considerable chal-
lenges—particularly for participants who were new to
Machine Learning at the start of the programme.

We commend all participants for their perseverance
and achievements in overcoming these challenges. As you
explore these proceedings, we invite you to appreciate
the depth of their intellectual efforts and contributions.
We are proud to showcase their work and hope it serves
as inspiration for aspiring researchers in STEM.! We are
confident that these young minds will continue making
meaningful contributions to the field and look forward to
witnessing their future successes.

Chairs of BeyondAl
Dr. Filip Bar and Keisha Kwok

December 2024

IThe code for each project can be found on https://github.com/ThinkingBeyond/Beyond AI-2024.


https://sites.google.com/view/devendradhami?pli=1
http://www.linkedin.com/in/helenabahrami
http://www.linkedin.com/in/helenabahrami
https://www.linkedin.com/in/filip-bar/
https://www.linkedin.com/in/cief/
https://adeyemiadeoye.github.io/
https://adeyemiadeoye.github.io/
https://researchportal.vub.be/en/persons/emilie-gr%C3%A9goire
https://www.linkedin.com/in/barancikova/
https://www.linkedin.com/in/barancikova/
https://www.linkedin.com/in/matthew-pugh-383a9a14b/
https://github.com/ThinkingBeyond/BeyondAI-2024

il

Contents

S. Amarawickrama, K. Prakash,An Elementary Proof of the Universal Approximation Theorem for
Multilayer Perceptrons . . . . . . . . . . e e
O. Igue, G. Khankhel, Weight Initialization for MLPs . . . . . . . . . . . . . ... .. .. ......
L. Vidal, J. Woodhouse, Comparing Transformers to LSTMs with Attention . . . . . . . . . .. ..
A. Singh, Y. Yifat, A Comparative Analysis of Optimizers for Classification with CNN . . . . . . ..
P. Kundu, S. Adegbite, Non-Linear Classifiers . . . . . . . . . . . . i i ittt
M. Zaied, A. Adane, Cooperative Control of Multi-Agent Systems: An Optimal and Robust Perspective
A. Srinivasan, S. T. Kalidoss, Graph Neural Networks for Anomaly Detection in Dynamic Graphs . .
N. Saadawy, P. Raul, Linear Search vs Grover’s Algorithm . . . . . . . . . . . . ... ... .. ...
S. K. Gopal, H. Muthurengan, MNIST Digit Classification: Comparing Classical and Quantum Ap-
proaches to Hyperparameter Tuning . . . . . . . . . . . . e 9
E. Odiwe, Kolmogorov Arnold Networks vs Multi-Layer Perceptrons . . . . . . . . . . . . . .. ... 10
L. Jaafari, W. Kasthuri Arachchillage, Geometric Clifford Algebra Networks: Bridging Geometry and

AL o 11
O. Eshmurodov, A. Ajaykumar, Querfitting vs Double Descent . . . . . . . . . . . . ... ... ... 12
N. Haque, Farly Detection of Diabetic Retinopathy Using Machine Learning . . . . . . . . . . . . .. 13
S. Karmakar, Double Descent vs Querfitting in Deep Learning . . . . . . . . . . . . .. .. .. ... 14

O ~JO Ul = W N+



PROGRAMME

BAI Introduction to Artificial Intelligence and

Research 2024, Inaugural Cohort

An Elementary Proot of the Universal Approximation
Theorem for Multilayer Perceptrons

Introduction

The universal approximation theorem a Multitayer Perceptron

uous funetion - This proje
h multiple hidden

(1) Sigmoid functions can
approximo’re step functions

(2) Bump and tower functions

Bump functions can be constructed from step
functions

on Nielsen's wsual proof

Breakdown
of Nielsen's zgmod_,
visual proof

Step function

Bump function

(3) Proof of approximation using pointwise convergence

MLPs with sigmoid activation can
approximate continuous functions

Proof for approximation

Since UIE constructions made from adding [C%E[WE’ bump and tower functions are
nctions. the next >lep in the pfOD is to show that a m!

‘constant function can approximate a continuous fun

The pecewse consont fucton dides the nput space ity equl, iz

ed regions and
consists of a hyperplane in each region since each input is divided inta' & sections.

In each section, the output of the approximation function his 4 ) where i is a
vector where each companent is equal to the lower bound of each input in the region

We need to <th \mt he limit of k is S a + 00 n‘h\ch mEJIK we have to show [Iut
for | f(z) — h(z)| < >0 we can !md: i\ <uch thatif k then [f(z) (=

J(E) - hle) = fZ) - f(i) = |f(&) — D] = |#(z) - fiw)]

Then, using the definition of a continuous function we know that we can always make
£(8) - fi) <€ if 1F-da|<d

Using the Eucidean distance metric we can show
that |7 — @ < 3. This tels us that 've can always
choose a K for Wh\lh fis K, |

Therefore, we know that we can increase the
number of sections for 3 better approximation and
have praved paintwise convergence

MLPs with RelLU activation can
approximate continuous functions

Construction of piecewise function

Affine combinations and simplices

An affine combination s a linear combination of 1, z2, ..., @
+ant, where 3 ai=1

An affine combination of n+1 zis where 0 < a; < 1 gives us an n-
simplex A O-simplex is a point, 1-simplex is a line, 2-simplex is a
triangle, 3-simplex is a tetrahedron and so on

RelU functions can form simplices

Fig B(a) Fga®y = ¢ Fig.8lc)

Sean for ful video

app! of afunction f: R" — R
A piecewise approximation for a function can be made using affine combinations
to form a function built with these simplexes,
A point & in " can then be represented as an affine combination
The approximation functien is thus given byglz) = 37, e f(z:)

Proof for approximation

By using the fact that f(x) is continuous, we can
prove pointwise convergence

We choase ak < & then we have  This ensures
that for all €

1#(2) ~ )]  |f{a) - fla)] <.

Since each of the components in the m- dimensional
autput vector is a 1-dimensional output, so any m-
dimensional output vector is simply m single output
functions stacked Therefore, since we can
approximate each of the m components, we can
approximate a function #

With some aigebra we get

f(: o) < 1fz) — ¢ ‘
\ lere ¢ = f(z;), where j is the
value of i that resufts I the
largest value of If(z) - fiz))

Tower function
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(4) Applications and
Limitations
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Students: Osewuike Igue, Gulalaiy Khankhel

1. ABSTRACT
o O

This project investigates how weight initialization
techniques affect the training dynamics and
performance of MLPs, focusing on convergence,
gradient stability, and accuracy. We also explore their
interaction with activation functions, optimizers, and
model depth to determine optimal strategies.

2. METHODOLOGY

We ran 3 main experiments to analyze the performance
of Weight Initialization Methods including Zero
Initialization, Random (Gaussian) Initialization, Xavier
Initialization, and He Initialization ([2], [3]).

A\ R4
The effect of different ~ The effect of different The effect of MLP
activations (RelU, optimizers (sep, depth on weight
Tanh, Sigmoid) on the Adam) on the initialization

performance of performance of
different weight different weight
initialization methods.  initialization methods.

performance in a
shallow and deep
architecture.

The MNIST Handwritten Digit Dataset was normalized
and split into training and testing sets. Models were
trained with a learning rate of 0.01, batch size of 150, and
Cross Entropy Lloss. For Activation and Optimizer
Experiments, we used a 2-hidden-layer MLP, and for the
MLP Depth Experiment, we compared 1 vs 6 Hidden
layers. The Main Performance metrics included
accuracy and  convergence speed, with results
visualized through graphs for test/training loss over
epochs, test accuracy over epochs, weight distribution,
and activation distribution.

Input Layer Hidden Layers Output Layer
I's X

Fig. 1- Example MLP Architecture with 2 hidden layers
K — (wmhm + bu))

Weight Initialization for MLPs

3.RESULTS
o O

Activation Functions Experiment

Sigmoid Relu
Rew

= Nt oeae
a0] = Sommaonane

Random » N

B o 0

Zero i
N N I A i e |
Xavier ,
» = : e
He .

SGD Update Equation: @ — - grad

Adam Update Equation: 7 -~ SGD |, Adam
Vi te

Varying MLP Depth Experiment

Xavier 1 Hidden Layer vs 6 Results

He 1Hidden Layer vs 6 Results Random 1Hidden Layer vs 6 Results

5 === Wil B ] ~™" Andfor 6 hidden

| . . . layers, our loss

became nan,
indicating
gradient
instability

Mentor: Barbora Barancikova

4. CONCLUSION

Our research shows that Xavier and He
Initialization perform well across various
setups: Xavier suits tanh and sigmoid, while
He is ideal for ReLU. Random Initialization
works for shallow models but risks gradient
issues in deeper ones, while Zero Initialization
fails entirely as it prevents learning. He
initialization excels by maintaining gradient
flow and avoiding inactive neurons hence
ensuring faster convergence with RelU.
Xavier balances gradient propagation in
deeper networks leading to better stability
and test accuracy. In conclusion, Xavier and
He are the best choices, Random is viable for
simple models, and Zero should be avoided

(0, 21, [3]).

5. FUTURE RESEARCH

Future research on this topic could explore
additional weight initialization techniques,
such as LeCun or Orthogonal. Moreover, our
findings could be extended to more complex
tasks and diverse datasets to test their
generalisability and provide more insight into
how different initializations interact with
various architectures. This could help refine
best practices across a wider range of
applications ([1], [3]).

References:

o [1] Haykin, S. S. (2009). Neural
networks and learning machines.

Checkiout Pearson Education.

our code!

[2] Glorot, X, & Bengio, Y. (2010).

H ] Understanding the difficulty of
training deep feedforward neural
networks.

0 4 o [38 He, K, Zhang, X, Ren, S,, & Sun,
s J. (2015). Delving deep into

- rectifiers: Surpassing human-level

A performance on imagenet

classification.

® Fig.1from
https://www.javatpoint.com/multi-
layer-perceptron-in-tensorflow.
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How do Transformers compare to LSTMs with attention in
performance and efficiency for text-based sentiment analysis?

Authors: Louis Vidal, Jack Woodhouse
Mentor: Matej Cief

Tokenized Input Input Sequence

The IMDb reviews dataset

consists of 50,000 movie

reviews, with an even split

y of positive and negative

« Evaluate their efficiency labels. So this is perfect for
regarding training time, training and testing binary
inference speed, and classification with sentiment
resource usage. analysis.

Tmnsformers use self-attention to process all words
ly, capturing rek regardless of
distance. This parallelized approach ensures faster
Multi-Head Self- and inference. Multi-head self-attention
Attention identifies key sentiment phrases like 'highly

recommend' or 'waste of time,’ enhancing predictions. proving p for long
reviews.

This study compares the performance and
efficiency of Transformer networks and
LSTMs with attention mechanisms on the
IMDb reviews d alarge collection of
movie reviews commonly used for
sentiment analysis.

« Compare the performance
of LSTMs with Attention
and Transformers for

q o

Embedding Leyer (with LSTMs (Long Short-Term Memory) process
sequences step-by-step, capturing context
over time. Attention enhances this by focusing
LSTM Layer on key sentiment words like 'amazing' or

Embedding Layer

] (e Attention Mechanism
Key Features:

+ Parallel processing for scalal

+ Multi-head attention extracts diverse word

relationships.

Key Features:

e .S ial processing maintains context.

« Attention highlights crucial words.

+ Ideal for smaller datasets or limited
PR——

Classification Head

Output Output
Sentiment analysis plays a critical role in analyzing n positive
consumer opinions and public sentiment. The IMDb S LSTM withattention  Transformer
oo Oy ER
d‘““s‘?" consis ting .°f 50’9(!2 b'i'lf""‘:d‘?‘“':.v G This study compares LSTMs with Attention and Transformers for sentiment analysis g § B
(G SN UEAD L) DL AT LS Ty 7 25,000 on the IMDb reviews dataset. Both models were trained from scratch to classify
sentiment classification models. Comparing LSTM and 50% Metho reviews as positive or negative, ensuring a fair comparison. The process included
Transformer models helps identify the best approach for o do Y data preprocessing, model training, and performance analysis.
various real-world applications, considering both ) (o)
performance and computational constraints. o(v b Q‘,
> Abstract
This study evaluates the
performance and efficiency of
Transformers and LSTMs with
attention mechanisms on the
IMDb reviews dataset for
sentiment analysis. We compare

0
£
£

The performance of both models on the IMDb
dataset was evaluated using key metrics:
Accuracy, Precision, Recall, F1-Score, and ROC-
AUC. The Transformer outperformed the LSTM
with Attention in most metrics, showcasing its
superlor ability to hnndle long-range

pendencies and F structures.

Transformers generully outperform LSTMs with
in lysis tasks, excelling in
both performance and efficiency. This mnkes them
ideal for larger d and faster pr Suita 5 9
However, LSTMs with Attention remain a viable ntin /“:
alternative for scenarios with limited . €
computational resources or a need for smaller
models. Future research could explore hybrid
models that combine the strengths of both
arch es or i lication of
Transformers to smaller, less strudured datasets.

Tometh e cneameay, -2

. . -~
training speed, and resource 5
requirements, providing insights 0‘9

into their strengths and

limitations

‘:‘“ ,-on

Transformer [ILSTM

In terms of efficiency, the Transformer

Efficiency

« Training Time: Transformers require more GPU
resources and training time due to their larger
number of parameters and complex attention
layers.

- Inference Speed: Despite their computational
intensity, Transformers process input faster
than LSTMs during inference, thanks to
parallelized architecture.

- Memory Usage: LSTMs with Attention use
significantly less memory, making them more
suitable for deployment in resource-
constrained environments.

Vaswani, A, et al. (2017). Attention Is All You Need. (Reference: https://arxiv.org/abs/1706.03762)

Performance

+ Ovorcll Performanc; Transformers outparform
LSTMs with Attention across key met

yathrns more effectively.

+ Accuracy: Higher accuracy, specilly fo longer

reviews where LSTMs may lose context due to
ial processing.
i ior precision and recall,
particularly for detecting subtle sentiments in
complex sentences.

+ Fi-Score: Higher Fi-scores indicate a balanced and

reliable performance in real-world sentiment
analysis tasks.

Limitations

- LSTM with Attention: A viable choice for

smaller datasets, shorter texts, or
environments with limited computational
power.

- Transformer: Ideal for large-scale

datasets, long-text analysis, or
applications requiring high accuracy and
scalability.

- However, Transformers' computational

demands may limit their applical
real-time or low-power scenarios.

Bahdanau, D, et al. (2015). Neural Machine Translation by Jointly (Reference: https://arxiv.org/abs/1409.0473)

Accuracy Precision  Recall ~ Fl-Score ROC-AUC

required approximately 6 minutes to train

across 5 epochs. Its self-attention mechanism

parallel pr r g in
faster inference times compared to the
sequential nature of LSTMs. However, the
Transformer’s larger architecture incurs
higher computational costs.

A programme led by
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A Comparative Analysis of Optimizers for Classification with CNN

BeyondAl 2024: Project 9B A. Singh, Y. Yifat; Mentor- Mr. Adeyemi D. Adeoye

I. INTRODUCTION N V.RESULTS

il

Optimization is a crucial aspect of Deep Neural Networks (DNNs). During training, an Binary Cross-Entropy (BCE) = N Z [yi log(9:) + (1 — y:) log(1 — 9:)] As shown in figure 4.2, AdaGrad achieved the highest accuracy of 79.09% and F1-score
optimizer adjusts the weights and biases of the DNN to minimize a loss function. L of 79.33%. The highest precision was achieved by Adam which was 84.23%. Nadam
excelled in recall with 81.62%. It was found that SGD achieved highest accuracy with
minimize f(e) E g( 0 ZEZ) y ) 0.01 learning rate. In figure 43 it 'was observed }hal AdaGrad demonstrated high
2] accuracy across various batch sizes, with the best performance (78.15%) at the batch size
B T —— IV. MODEL ARCHITECTURE of 32. RMSprop and Nadam performe bete a higher batch sies (512), with acuracies
of 79.58% and 78.6%, respectively. Adam peaked with a batch size of 128, achieving an
accuracy of 78.0% which showed its adaptability to different batch sizes. AdaDelta

maintained stable but relatively lower performance across all batch sizes.

An optimization algorithm may perform better under one setting than another. Therefore, a
comparative study of different algorithms is important for identifying an optimal setup for
different algorithms for a particular task and model architecture. In this study, we aim to
evaluate the performance of the six popular optimizers (SGD, Adam, AdaGrad, AdaDelta,
RMSprop and Nadam) on a classification task using a Convolutional Neural Network (CNN)
architecture. These six optimizers have been chosen because they are widely used in Deep
Neural Networks. Each optimizer has its characteristic strengths and limitations, and
oftentimes, one addresses the limitations of another. The choice of an optimizer directly

R 4 ;
L | .
influences the generalization properties and robustness of the final trained model, and hence it is i o lg:::;i‘t.s G‘i“:;f, %L::.f
important to choose an optimizer which is not only computationally efficient but also enhances K
the model performance. X / 0.
) g conv2  128-filters ReLU(z) = max(0, z) 0
convl 64-filters L
II. PERFORMANCE COMPARISON & METRICS il !
5 5 . = Ada

B Accuracy [ Precision Recall | F1-score
1.00

~
o

o
o

N
(5]

—
The performance was assessed using four key evaluation metrics: accuracy, precision, recall and l+e 0.00 am  Nadam RMSprop AdaDelta ~SGD
Fl-score. Accuracy measured the overall correctness of predictions. Precision evaluated the s
proportion of true positives among predicted positives. Recall determined the proportion of Convolution st Dt e
true positives correctly identified. The Fl-score balanced precision and recall. These metrics IRALY) Figure 4.2: Comparison of Optimizers based on the performance metrics
collectively provided a comprehensive evaluation of each optimizer’s effectiveness in - _______ {5 Byt Aaanns Ay Tl
classification tasks. Experiments were conducted to analyze the effect of learning rate (for SGD)

and batch size on model performance.

Batch size W16 W32 Wes W 128 W 512

III. OPTIMIZATION ALGORITHMS 08

Opti Description Update Formula 0
5. m_ o o
Adam Combines momentum and adaptive learning rates for fast and robust convergence which is ideal for NLP, computer vision and large =t T P =T =
datasets. However, it tends to overfit smaller datasets and has higher computational costs. my=Fimys+ (1= B1)ge ve=Baveos + (1= Ba)g} o
" . " 3 5 5 P i A=) !
Nadam Adapts learning rates based on recent gradient magnitudes that makes it effective for non-stationary data, especially in RNNs and 01 =011 — \/1,!_:I+ e (Hnm 4 17753%)
reinforcement learning. It is sensitive to hyperparameters. = - '
1, Dy Mg, V¢ @S in Adam o
it 1 n
RMSprop Nesterov for faster g applied in vision and speech recognition. Despite its 0,=0,_1— ——gi, v, =PBuv_1+(1—P)g?
speed, it requires careful hypcrparameler tuning and is computationally intensive. Vet e
Veite 0.0

(=]

Accuracy

IS

2
AdaDelta Addresses the decay issue in AdaGrad by normalizing updales with a movmg average of gradients, making it suitable for RNNs and A0, = Vo Fe o BT T +@ =gt Adam Nadam RMSprop AdaDelta SGD AdaGrad
LSTMs, albeit with and i for data. se =51 +(1—9)(A6,)*
Figure 4.3: Comparison of Optimizers based on the batch sizes
SGD Uses mini-batches for gradient descent, offering simplicity and efficiency. It rges to the global mini; for convex ions but 9,—0 _
may oscillate on non-convex ones. Commonly used in linear regression and deep neural networks. L t—1— M9t

ElpRss
AdaGrad Adjusts the learning rate based on the historical sum of squared gradients, making it effective for sparse data like NLP but prone to -

X 2 0, =6, —
slowing down over time.

n / ’
mm’ Gy =Gy_1+g}

Access our paper
with References [5]¥
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Linear Classifiers = Struggle with Non-linear Data

Non-linear Classifiers — Evaluate Accuracy —
J Evaluate Complexity — Evaluate Interpretability

Compare on Different Datasets — Guide Selection of
Best Method for Complex Data

We evaluated classifier performance on three diverse
datasets, each with varying complexity and feature
types. The datasets were split into 70% training and

30% testing sets, ensuring that training data was
used for model training, while testing data evaluated
the model's generalization.

 Logistic Regression

o Support Vector . Naive Bayes
Machine (SVM) with
Radial Basis
Function (RBF)
Kernel

o Decision Tree

o Random Forest

o Gradient Boosting

We used multiple performance metrics to assess the
effectiveness of each classifier:

Accuracy | Precision | Recall
| F1-Score | Training Time

.Random Forest (78%) and
Gradient Boosting (79%) show |~
decent performance, but the [
noise reduces their ability to

"""*Moon Dataset
Gigh Noise)

e Logistic Regression and Naive

/

eneralize. Decision Tree " £ but |
73%) is the weakest, as it A A Bayes are faster but less
overfits to noisy data. Naive Metric IR SM DT RF 6B N8
Bayes (81%) also performs P(Class0) 084 082 076 078 080 084 accurate.
synthetic dataset ST DL RGem® 073 053 071 a0 a1 079 Random Forest and Gradient
enerated usin | Regression, but its . . ) X
make . moons from R sys DT R’ assumptions limitits ability to 50" 0% 0% 07 070 0 o Boosting are effective for noisy or
- & handle noise f 5
Kl t t - . FiClass1) 081 081 073 077 078 081
library. | (d?o%fiiﬁs Logisti Regression (81%) performs_ offectively. scarsey 081 022 073 078 079 081 imbalanced datasets, balancing
two interleaving reasonably well but still struggles with the MacroAvg 081 082 073 078 079 081 i
crescent shapes nature of the data. SVM(82%) is the top Vieighted Avg 081 0.82 073 078 079 081 accuracy and robustness while

with added noise.

reducing overfitting, though they
are more computationally

performer, slightly better than Logistic
Regression, as it captures non-linear

patterns
s Decision Tree (90%) expensive than simpler
“ Moon Dataset performs well but may i ifi
— @ overfit, while Random i classifiers
Forest (94%) and Ly \ )
. Gradient Boosting (93%) - \
. provide strong results -
¥ . through ensemble JS7L 5SS
learning. Naive Bayes
C — “ (78%) underperforms Classifier Accuracy  FiScore  Recall  Precision
v (/}*r Ilg el v . due to its assumption of  tesstc fegresion 089 08 08 oss
Moon dataset for L VM D; RF¢ Gl Npe  feature independence, SVM with RBF Kerel 054 0% 04 os H
Sompafaive I A R St NS © Evaluation on More
G SIS Logjistic R ion (83%) st les with dataset. Fandom Foest o2 os2 w2 os o
Conoratba wRnm gistic Regression 4) struggles with dataset.
BTOESENAI or-incr patiens n the voon dataset. e T R T R Diverse Datasets
9 - SVM (95%) excels due to its ability to Naho Bayes as 081 o | o

model complex, non-linear relationships.

- ¢ Trying Out Other Types

Random Forest and A
\

Gradient Boosting (96%) /\ T
excel due totheir ability to |/ '\ of Classifiers such as
capture complex data H /\
patterns and can handle I/ \ neurCII netWOI’kS
non-linearity . On the other / \ -y
hand, Decision Tree (88%) / —r
and Naive Bayes (84%) avays
underperform, as Decision
. 2 Tree tends to overfit, and
syt pf  gF § NB Naive Bayes assumes e Accrscy  FiSeore  Recol  Precion
rd s R ¢’?B ) feature independence, ;.. teyesion 092 ’ 092 02 os
0-9), Logistic Regression (92%) performs Which doesn'thold for ., i s 038 0% os
kit fion decently but struggles with complex, mage data. Decsion e 0se W om  owm
machine non-linear patterns in MNIST data. SVM Random Forest 096 096 0% 0% i
loarming mecels (98%) and ensemble methods like Gradient Boostng 09 096 0% 06 * Cortes, C,, & Vapnik, V. (1995)' .
Random Forest and Gradient Boosting. Noive Bayes oss oss 0m  om Support-vector networks. Machine

learning, 20(3), 273-297
 Breiman, L. (2001). Random forests.
Machine learning, 45(1), 5-32.
e Murphy, K. P. (2012).

The bar chart and line graph represent the accuracy scores and
training time of the datasets shown in the image beside them,

Machine
learning

a probabilistic
perspective.
MIT pres

respectively. Each of the bars and points in order represents
(LR)Logistic Regression (Linear), SVM (RBF kernel), (DT)Decision Tree,
(RF) Random Forest, (GB) Gradient Boosting, and (NB) Naive Bayes.

ThinkingBeyond



N & BAI Introduction to Artificial Intelligence and
Research 2024, Inaugural Cohort

PROGRAMME

An Optimal and Robust Perspective

BeyondAl, Thinking Beyond 8B

Introdution

The c of

F agents, such as unmanned aerial
vehicles (UAVs), in dynamic and complex environments, has become a critical
challenge in modern robotics. UAV swarms are increasingly being utilized for a
variety of applications, including search and rescue operations, environmental

monitoring, and infrastructure insp

collaboration among UAVs while

complex task.

efficiency,
collisions, and adapting to unpredictable environmental conditions remains a

Inspired by coordinated behaviors observed in nature, such as flocking in birds

and schooling in fish, the study of multi-agent systems (MAS) has grown in -
prominence. These natural systems exhibit remarkable levels of cooperation, sy
where individual agents follow simple rules yet achieve globally optimal - T i
The study of multi-agent coor particularly in mobile r
has ged as a key area of research in fields such as s

control theory, robotics, and optimization.

T4

The problem statemant

In Multi-agent reinforcement
learning, agents exist in different
scenarios such as working
collaboratively to tackle a given
problem, competing with each other
to get an optimal reward, or doing
both works together or competing for
each other like in football. In these
processes of learning we have various
problems in order to train how they
work effectively and efficiently

Local @ function

When we work in real-time continuous
environments such as self-driving car
require immediate responses to change
of environment. This require a huge

-]

Revard estimation

‘Choose local action E

Environment

7D Loss= £,_(0)

Q-Learning

Methodology

Cluster Space Control Framework

The method relies on the definition of a vector of CS variables that describes the position, orientation,

and shape of a virtual

ng the

variables- as well as a set of inverse
between velocities in both space.

r= (c).

4

Geometric Coordination & Optimal Control

Geometric Coordination

and manifold optimization provide a robust foundation

for multi-agent coordination. These metheds align

individual agents' trajectories and maintain formations

through precise transformations in Euclidean and
e

Optimal Control

ensuring efficient resource use and high-
performance task execution. In MAS, control laws
are derived to balance energy consumption,

i and collision aveidance.

geometric ‘that each agent adjust
its position in relation to others, maintaining formation
and avoiding collisions during navigation.

Key Formula:

T={Rf), ReSOMm) tc®"

Whecs

ngo informaticn
tributed way

. 1 I3

+ SO(n) Spacal rthogensi group snsuring val resabons

amount of sensor data analysis to
execute the best action in a given state.

——» Dataflow

——> Gradient flow ~—» Communication link

This diagram illustrates the

As the number of agents |
increases, managing t
grows exponentially. This results in
communication network overload and
loss of performance leads to suboptimal
outcomes.

Scalability

The coordination of drones in dynamic and cluttered

ly when tasks require among multi nts.

collaborative task execution.

gle-ages
fail to meet the complex demands of real-time navigation, obstacle avoidance, and

Communication

overall framework for integrating
Reinforcement Learning (RL) into
UAV navigation, highlighting the
interaction between the
environment, the agent, and the
reward function. It provides a
structured approach to ensure
that the UAV effectively learns
and performs tasks such as
collision avoidance, localization,
and waypoint navigation.

The theory ensures that each drone's trajectory is

pt respect to the task
Cost Function:
P

Integration of RL Framework in UAV Navigation

Mo UAY Kot s L 4 Symames e

Stz

pi allowing for full specification
and control of the system. For a group of N robots with m degrees of freedom (DOF) each, the
framework defines a set of kinematic transforms c = KIN(r) -where r is the vector of (N x m) robot
space variables, (i.e., position and orientation of the robots), and c is a vector of (N x m) cluster space

function,

Mr Matej Cief
Menna Zaied and Alazar Adane

PPO Algorithim

PPO Is related to policy strategy h given through
training, the policy ups and tability in the policy function.
One of using PPO is action space such as
vehicles. PPO uses a stochastic policy, while th of
learned knowledge which doesn't lead to large amount of changes
Environment
- .
e .
i
L e
s
TR e
- e - -+ Upliak probabil !
A e :
!
e Me g g !
s L SR S - 1
- |
» - -
PG
LPE(0) = Eflogma(adse) * A
Simulation & tresults
H—

This study explores the integration of reinforcement
learning (RL) and geometric methods to address these
challenges, facusing on enabling real-time obstacle

i d efficient task in UAV swarms.
By leveraging the strengths of MAS and advanced

i we propose a

esource utili n and ensures
nation in dynamic environments.

that optimi
seamless cool

Our results

-

.':.q{/ g

[

experiments Metrics such as FPS, timesteps, and policy op
cenaro Traiming loss | Testing lows
“Traiming set TTeingsa | L, [cGAN | I
simulated simulated 0.106 | 0666 | T.T14 | 0711
simulated (same training as previous case) | real-world | 0106 | 0666 | 2779 | 0738
simulated + real-world veal-world | 0135 | 0692 | 1.792 | 005

Reference

Shakin &8 hot .

communiation. sk

* Sution 1.5k S, & 12815, Reforcament leaeiog: A e ducson, MIT Fres
*Lang P o,

Patern osogecian fgp. 13 4381

S
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Abstract

We implement a -Temporal Graph Neural
N rk (SpatioTemporalGNN) to understand
spatio-temporal relationships between nodes in a
dynamic graph. To realiss DGNNs, we utilise
and the e

Two-Line Element (TLE) data, we model satellites

as nodes in a dynamic graph and encode their

relative spatial interactions as edge features. Qur

approach demonstrates the capability of graph-

based learning to capture spatiotemporal

dependencies, enablin the TR
nali r in our

/= Dynamic Graph Neural Networks

Graph Neural Networks (GNNs) are a powerful tool for learning from grap 5 data, where
nodes represent entities and edges capture relationships between them. They are widely used across
various domains, such as social networks, molecular biology, and recommendation systems, due to
their ability to effectively model complex relationships and intercctions. This is particularly important in
real-world scenarios where graphs are not static but change as infer ns and re|

DGNNs represent entities as nodes with feature embeddings and encode evolving relationships
through d \ . These dynamic edges can reflect changes in connections,
interactions, or weights over time, allowing the model to adapt to varying graph structures. We use
GCNCo which aggregate information from neighboring nodes and edges, to effectively learn
and propagate both spatial and temporal patterns across the graph. By leveraging this approach,
DGNNSs can capture the mrerplcy berween ‘rhe srructurql and femporal aspects of the data, making

Data

We utilized the NORAD dataset’s TLE data of active
satellites, which provides detailed two-line element (TLE)
information for orbital modeling. Working with the SGP4
I ation algorithm, we converted TLE data into
Cartesian coordinates to represent satellite positions in
three-dimensional space. Using this ground truth, we
generated a temporal sequence of graphs, where edges
represent relative distances between satellites, capturing
their spatial relationships over time.

Each snapshot of the dynamic graph was taken daily,
enabling the model fo process evolving spatial and
temporal patterns effectively. We no features to
ensure stable training and split our data into testing and

atellite training sets for robust evaluation.

Results

Here’s how our model performed against SGP4.

\ Methodology

‘We approach this problem by working with a spatio-temporal graph neural

GNNS for
network model that utilizes Graph Convolution via the GCNConv function in Metrie Value

L]
. 3 - - Table 1
ooy g ; p . ete t n 1n S ' el I ' e . Mean Squared Error (MSE)  0.9957
i ) Eprany. This mocel i ceslansc o capfure botfh D ' C lO 1 s a ] Absolute Error (MAE)  0.09 Metrics [5]

spatial and temporal dependencies in dynamic graph data. The first GCN [ . Accurs 99.0000%

.
layer transforms the input node features into an intermediate S, I J t 1 S 1.0000

representation by at information from neigh

effectively encoding the local graph structure. Graph 1

The s: \ layer further refines this representation, r er R ERSOTRS + B S O : i Metrics [5]

spatial and enhancing the model's ability to discern intricate
patterns. By normalizing the feature distribution, we maintain training
stability, improve convergence, and ensure consistent performance across
varying graph structures. This approach allows us to effectively handle the
complexities of evolving graph data and neaningful patterns.

Time Step 12 Time Step 14

——

. y st : We observe that our model is able to accurately capture the spatio-

+2 temporal dependencies between satellites overhead and effectively

Output > predict collisions between satellites, which we have defined as

w0 ' anomalies. Impressively, our model achieves a 9 i
Q? ® ) - identifying these anomalies, showcasing its reliability and precision
in high-stakes scenarios.

This novel application of DGNNs provides an opportunity fo further

develop by incorporating additional features, porenhc:l\v improving
predictive performance and anding the mo

Future Work

« Extend the model to integrate external

Hidden 11 factors such as s ather and satellite 2
" e dore References

Model Architecture [4] «Improve edge representations using 1Kipf, T. N, & Wellng, M. (2017). Semi-Supervised
We calculate our loss using Mean Squared Er E), a widely used attention mechanisms for better and Classification with Graph Convolutional Networks.
metric for regression tasks that measures the average squared difference 2 Spcce‘frcck.crg. 7o i ) e e Sl i
between predicted and actual values. Trud‘qng. : .
QT (i mEEs GEEE i ( 3.Hamilton, W: L= Ymg.A Z., & Leskovec, J. (2017). Inductive
Sl ey, ClEn i F 8 I, an Representation Learning on Large Graphs.

4.Kim, Minseong & Lee, Jaeseung & Kim, Jibum. (2023).
provide a comprehensive assessment of mode\ performnce. S CETHT oy GO e (o

elliptic PDE problems. Engineering with Computers.

e Apply the framework to
AE) for evaluating including simulated
n, which more

Created By : Adityan Srinivasan & Sadhana Thirumangai Group 7B : Graph Neural Networks for Anomaly Detection in Dynamic Graphs Mentor : Dr Helena Bahrami
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MNIST Digit Classification: Comparing Classical and Quantum Approaches to Hyperparameter Tuning
Authors: Siddharth Kumar Gopal (SVM) and Harini Muthurengan (MLP) Mentor: Emilie Gregoire

Our study pares the op per of Support Vector Machines i Corat Gonfusion Hatic - (SS5e dmsentng w8 anas 12453 low1a3 esin Gamma s Accuracy and Lo Tenn
(SVMs) and Multi-Layer Perceptrons (MLPsHhruugh hyperparameter tuning. CrossValidation scores and Fitness Score ' n::slf;;:m‘.:: Tne e e

a Clazsificatio

We employed: Precition  ressi e1-scors
o Classical hyperparameter tuning methods for SVMs
o Quantum approaches for MLPs

For the SVM model, we focused on:

o Gamma hyperparameter
o Regularization hyperparameter (C)

For MLPs, we utilized quantum circuits to generate hyperparameters.

macro avg
weighted svg

=52 M o 0030833 oh Accuracy! 9.9755 o oot

I
e il
e

e idion ol Fig. 4 :Confusion Matrix for SYM with 10,000 Fig.5: Classification Report for SVMwith  Fig. 6:Variation of Learning Time and Accuracy with
Fig.3: Accuracy of various folds through the Images of MNIST 10,000 Images of MNIST respect to Gamma.
hyperparameters generated through the 70% Testing 70% Testing Accuracy peaked at Gamma = 0.026.
= quantum circuit Bamma =0.05andC=10 Bamma =0.05andC=1.0 Reached a peak accuracy of 0.967
* Training set of 60,000 examples and a test set of 10,000 examples. Accuracy = 0.9755 Accuracy = 0.9755 Regularization Constant (C) setas 1.

Each image is 28x28 images representing images from 0 to 9.

* Here the SVM model has used only 10,000 random images to decrease Lewring Teme v € Brater hecurscy v € orter
runtime and to make sure that the code was economically feasible. The . i) =] L ——t The performance of the SVM model was evaluated on the basis of two
model used 30% of selected images for training and the rest 70% for T | indices, the learning rate and the accuracy. We hypertuned two
testing. . - ‘-’ | hyperparameters, the Gamma paramater and the regularization constant or
* Dataset was already pre-pi d and bal. d. Thus, it is also ideal to the C parameter.
test both classical and q del |

The dataset was taken from scikit-learn and used in our codes. | The gamma parameter in SVMs is a critical hyperparameter that controls the

- | infl of i | training ex les on the decision boundary. It is
‘ traditionally used to modify non-linear kernels, in this case, the Radial Basis
- Function (RBF) kernel.

l'lg .7 & 8:Variation of Learning Time and Accuracy with respect to C. Accuracy peaked at C=1.26to 1.3
Reached a peak accuracy of 0.963
Gamma = 0.028 (Peak Accuracy in Hyperparameter Tuning)

Quantum Circuit:

8: —RX(3.00)—]
—RX(-1.10)—
2: —RX(-0.18)—

Fig-1: Quantum Circuit

MLP

SVM

Fig.2: SVMKernel

X = Combination of a Gamma value of 0.05 and a of 1.0 d the highest ¥ of . The scores for the three cross-validation folds (0.9438, 0.9344, and
* We approached the problem through both classical 0.9755 0.9407) high in model perf
and quantum approaches. SVM model through = Accuracy rate increased with the value of Gamma p . pl d, and then d d with roughly the
: same slope. Peaked at Gamma = 0.926 with peak accuracy of 0.967. « The average cross-validation accuracy of 0.939625, represented by the
. ;I::lsmal a;d :L:-ﬂIIanug.h :uar::..lm 7;‘::: : h. g = Learning time increased with the value of Gamma parameter after an initial drop and then plateaud towards fitness score, indicates overall reliable model performance for the
'S used a kadial basis Function ernel an the end. hyperparameters generated by the quantum circuit.

was optimized by tuning the gamma parameter and
the regularization parameter (C). These were used to
find a hyperplane which best separated the data
points.

Accuracy rate initially increased with the value of C parameter very sharply and then plateaud towards the end.
Peaked at C =1.26 to 1.3 with peak accuracy of 0.963. These results suggest that the quantum circuit generated

Learning time initially decreased with the value of C parameter very sharply and then plateaud towards the hyperparameters are not only valid but also capable of preducing high
end. accuracy results.

Link to our Google
Colab where you

* MLPs used learning rate, number of neurons and cansee the
regularization strength as hyperp s and i ion of
derived them from a quantum circuit employing both our SVM and
rotation gates. These hyperparameters were used to MLP models. Jain, A.(2024). SVM Kernels and Its Type. Medium. Available at: https://medium.com/....

LeCun, Y., Cortes, C., & Burges, C.(2010). MNIST handwritten digit database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist
Ciresan, D. C., Meier, U., Gambardella, L. M., & Schmidhuber, J. (2010). Deep, big, simpl; ral nets for handwritten digit recognition. Neural ion, 22(12), 3207-3220.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.

then train and evaluate MLPs through cross-
validation.
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Kolmogorov Arnold Network vs
Multi-Layer Perceptron

1. Introduction

This study compares Kolmogorov-Arnold Networks (KANs) and Multi-Layer Perceptrons (MLPs) on classification tasks using
datasets with varying sizes. Metrics such as accuracy, loss, convergence rates, and execution time are analyzed to assess
the strengths and weaknesses of each model. The analysis ensures both models achieve high accuracy to facilitate a fair
comparison, focusing on their ability to recall correctly. This work provides insights into the suitability of KANs and MLPs fol
classification tasks and offers guidance on selecting the optimal model based on dataset characteristics.

Brief Description and comparison

Theorem Universal Approximation Theorem

Kolmogorov-Arnold Representation Theorem

)
fx) = Y ao(w, x+b)

Formula
(Shallow)

fix) = Lf @, i: W,t\,,!]
=)

=1

fixed activation functions
on nodes
Model
(Shallow)
learnable weights
on edges

learnable activation functions
on edges

.
> sum operation on nodes

Formula

g MLP(x) = (W, e 6, e W, 0.0, « W, )(x)

@, B,)(x)

MLP(x)

Model
(Deep)

MLP is a neural network that works based on the universal
approximation theorem. It makes use of layers having a
number of neurons linked with other neurons from another
layer. Each Llayer has a fixed activation function and each
link contains learnable weight. Training is done using
backpropagation to update the value of the weight .

3. Dataset Analysis:

After analysis, | decided to go with Wine and Wisconsin Breast cancer Dataset. They have high
data points(shape) with similar features(features), different balancing to test each model’s

ability for different number of classes, and classification task.

References

Kolmogorov-Arnold Networks (KANs):Liu, Z., Wang, Y., Vaidya, S.,

Tegmark, M. (2024). Kan: Kolmogorov-Arnold networl

=== KAN(x)

KAN is a network that uses the Kolmogorov Arnold
Representation Theorem which states that mutivariate
functions can be represented as univariate functions. The
learnable activation functions are controlled with Bspline.
Bspline is a piecewise polynomial function of degree in a
variable. It is controlled by control points and each curve
between the control points has its degree

QR Code
for the

Dataset
Analysis

Ruehle, F., Halverson, J., Soljag

. arXiv preprint arXiv:2404.19756.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Multilayer Perceptrons (MLPs):Nielsen, M. Neural Networks an

Haykin, S. S. (2009). Neural networks and Learn

Learning. [Online]

g machines. Pearson Education..
Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.

& Hassabis, D. (2017).

Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,

114(13), 3521-3526

Emeka Odiwe
Mentored by Dr Helen
Bahrami

Wine 27,10

MLP and KAN Accuracy Over Epochs Taining Loss Over Epochs.
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4. Experimental Results

Traring Los Over Epechs

Taining Loss Over Epochs

5. Conclusion
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1.MLP converges faster than KAN, as observed in the accuracy and loss graphs. This indicates that MLP reaches optimal performance in fewer
epochs, making it suitable for tasks requiring quick results.
2.Both MLP and KAN achieve similar levels of final accuracy, with a difference of less than 0.03. However, MLP's accuracy was greater than KAN's
accuracy. MLP also has significantly less loss values compared to KAN.
3.Both models exhibit strong generalization. Testing accuracy is comparable to training accuracy for both MLP and KAN, with no signs of
overfitting. This confirms that both models are robust and reliable for unseen data.
4.For tasks requiring quick training and prediction times (e.g., real-time or large-scale systems), MLP is the preferred choice due to its faster

convergence and lower computational cost.
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Traditional models for robot dynamics are based on
complicated kinematic equations, geometric Clifford
algebra networks (GCANs) are an efficient alternative. Our % j
research focuses on developing GCAN models for use in for

predicting motion and forces in robots. Existing work on o
GCANs utilize symmetry group transformations through U
geometric algebras with the use of group action layers that (¢) Pointpair, left.
combine multivector transformations with specified group Fig 1. Trajectory Prediction
actions (Ruhe, 2023). (Low, n.d)

$
9

Fig 2: Planes (Ruhe, 2023) —

D% E wn -
L L While our MLP does not work well in 2D spaces,
- jﬂa-' € combining non geometric features proved to
. improve the accuracy and reduce the loss
E ,,.." significantly. Though this is interesting, because
e of the computational overhead, we decided to
not carry on with this approach.
c _ The GCA-MLP proved to be
romcrenmoary highly accurate with extracting,
z’;fn’g’;’; ﬁ;’;;’_;’é’;:;‘;:if combining and classifying
Institute, Martigny, geometric features Llike rotation
Switzerland. e .
and position in space. We plan
to develop this to be used in

robots for pose

classification and anomaly ’ N e
g:n;://arxiv»0rg/ab5/2302~ detection in the future. Fig 6. Loss Curve for geometric classification
oot (Generated by Matplotiib)

References: Training Loss Over Epochs.

Ruhe, D, Gupta, J. K., de
Keninck, S., Welling, M., &
Brandstetter, J. 2023).  qgerial
Geometric Clifford Algebra
Networks. arXiv.

Loulia J. & Warenya K.

d
oo"

< GCANS

BRIDGING
GeOMeTRY

11

Initially, we aimed to incorporate GCANs in robotic arms. However, GCANs could be
more useful in outdoor robotic systems. Because of time restrictions for the research
stage, we focused on implementing a Geometric Clifford Algebra - Multilayer
Perceptron (GCA-MLP) and testing it for various tasks like projections and object
recognition. In our GCA-MLP, the multivector(M) and the standard deviation(std(M))
of its components are used to normalize the multivector across the batch
dimension.

The activation function MSiLU along with the loss function Mean Squared Error(MSE)
is used to predict trajectories. MSE helps find the error between the target position
and predicted position for each sample in the batch.

MSiLU Activation Function

For the robot dynamic application, we
used cross entropy loss along with the
NAO dataset on robotic arms. This was
used to observe how accurate our MLP
was at classifying objects based on

their position or rotation in space

Fig 3: MSiLU Activation Function
(Generated with MatPlotLib)

Even though GCANs are able to handle 3D problems, they’re not

great with 2D points. The loss values remained consistently high,

this may be caused due to the limited dimensionalities of the 2D
Euclidean space, and lack of geometric depth.

Our MLP is moderately accurate at
trajectory prediction, however, the
predicted trajectory goes off track
after a few time steps. We tried
fine-tuning the hyperparameters
and adding an attention layer to
our code. Though we were able to
improve the accuracy and minimize
the loss, it wasn’t highly accurate

Fig 5i. Without attention layer  Fig 5ii. With attention layer

(Generated by Matplotlib) (Generated by Matplotlib)

Mentors: Dr.Filip Bar, Mr. Matthew Pugh
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ract

In this study, we investigate the interplay between double
descent and regularization across shallow neural networks,
decision trees, and ResNet architectures, using both synthetic
and real-world-inspired datasets. Our experiments span
multiple training regimes, including epoch-wise and model
complexity-driven setups, revealing architecture-specific
manifestations of double descent. Notably, dropout proves
effective in mitigating overfitting in high-complexity regions,
while weight decay demonstrates consistent regularization
benefits across simpler models. Additionally, unexpected
anomalies, such as test loss outperforming train loss, were
observed in specific configurations, shedding light on the
nuanced dynamics of regularization.

Machine learning has evolved, leading to the development of
overparameterized models that fit training data exactly while
achieving strong generalization performance. This paradoxical
behaviour challenges traditional notions of the bias-variance trade-
off, which has guided our understanding of model complexity and
generalization dynamics.

Double descent refers to a behaviour in model performance as
complexity increases. Traditional machine learning theory suggests a
U-shaped curve where test error decreases up to an optimal
complexity level before rising due to overfitting. However with double
descent, test error initially decreases, rises, and then decreases
again.

This study addresses the following
research question: How do
regularization techniques (such as
dropout and weight decay) influence
the double descent phenomenon and
mitigating overfitting across different : S T I R
deep learning model architectures? -

Future Work
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EARLY DETECTION OF
DIABETIC
RETINOPATHY USING
MACHINE LEARNING

Diabetic retinopathy (DR) is a leading cause of
blindness, accounting for over 1

cases and 3.28 mi

globally. Early detection can significantly mitigate
its severity and impact. This research conducts a
comparative analysis of machine learning models,
specifically Convolutional Neural Networks (CNNs)
and Vision Transformers (ViTs), to evaluate their
effectiveness in detecting DR and similar medical
conditions in low-resource settings or clinical
practice.

Stages of Diabetic Retinopathy

Stage One Stage Two Stage Three  Stage Four

retinopathy.

Fig 01: DR Stages

HOW DETECTION WORKS

Machine learning models like CNNs and ViTs analyze
retinal images to detect key indicators of DR, such as
microaneurysms, hemorrhages, and exudates:

« Stage 1 (Mild): Characterized by 1 or 2
microaneurysms.

- Stage 2 (Moderate): More than 20 microaneurysms
and occasional hemorrhages.

« Stage 3 (Severe): Numerous hemorrhages in all
quadrants, along with venous beading.

« Stage 4 (Proliferative DR): Growth of new, fragile
blood vessels (neovascularization) prone to
leakage.

These features are analyzed to classify disease.
severity, aiding early intervention and treatment.

Image Preprocessing

The Kaggle DR Dataset 2019, containing 224x224 retinal images across five
diagnostic categories, was augmented using the following operations:
: Random rotations up to 15° for varying camera angle:
orizontal and vertical shifts up to 10% for alignment L
« Shear & Zoom: Shearing up to 10% and zooming up to 20% for distortions

and scale difference:
« Flipping: Horizontal I

Fig 02: Preprocessed Images

This Convolutional Neural Network (CNN) classifies retinal images by DR
severity:

Input Images: Processes 224x224-pixel retinal images

Feature Extraction: Convolution detects patterns like spots or textures
indicative of disease.

Filters slide over the image to extract

features, refined through multiple layers.

Flattening: The 3D feature maps are

converted into a 1D array for further

processing.

Classification: Fully connected layers

analyze features, and the output layer

categorizes images accrodinsg to stages.

The Vision Transformer detects DR by the
following process:

Patch Encoding: The image is divided into
16x16 patches, flattened, and embedded
with positional data to retain spatial
relationships.

Transformer Blocks: Four Transformer
blocks use self-attention to analyze
relationships between patches.

Feature Pooling and Classification: Global
pooling aggregates patch features,
followed by dense layers that classify the
image into stages.

Fig 04: ViT

ccuracy over Database

The graph shows that for CNN, training accuracy remains high (91-
95%) all across but validation accuracy drops significantly as the
dataset size decreases. The ViT model, however, exhibits stable
validation accuracy (~63-94%) even with smaller datasets.

Analysis
Overall, the ViT model shows more consistent performance with training
and validation accuracies around 70-73%, indicati
generalization and less overfitting. However, the confusion matrix
reveals misclassification between "Moderate" and "No DR" categories. In
contrast, the CNN model has higher training accuracy (~90%) but
stagnant validation accuracy (70-75%), suggesting overfitting.

Fig 08: Confusion Matrix Comparision (CNN vs ViT)

MultiClass Comparision (DR Stages)

Fig 06: CNN vs ViT Comparison
Both CNN and ViT models display similar trends for F1-score, Sensitivity &
Specificity (in Fig 06). However, the CNN's Training Accuracy is ever
increasing while validation accuracy plateaus at 70-75%, while the ViT
model oscillates around 73% for both training and validation, indicating
more consistent but limited performance.
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Conclusion

In the context of detecting medical conditions
like diabetic retinopathy, Vision Transformers
(ViTs) demonstrate better generalization,
making them potentially more robust for
diverse, unseen cases. However, this
advantage heavily relies on pretraining with
large, related datasets. Convolutional Neural
Networks (CNNs), despite a tendency to
overfit, excel at extracting local features and
distinguishing specific stages. For rare or
underrepresented cases, CNNs can
outperform ViTs if augmented datasets and
regularization techniques are carefully
applied. Both models demonstrate
complementary strengths, and their selection
should depend on the dataset size, available
resources, and application requirements.
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