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Preface

Welcome to the proceedings of the 2024 inaugural co-
hort of the Introduction to Quantum Research for Girls
(IQRG) programme run by ThinkingBeyond in collabo-
ration with Girls in Quantum from 29th April until 28th
June 2024.

This year’s programme brought together thirty-six
talented young women aged 15-22 from across the globe.
Each of our young researchers had to pass a rigorous se-
lection process. Having stood out amongst 309 applicants
from more than 50 countries, they must also successfully
complete the Course Stage of the programme before pro-
ceeding to conduct a research project under the guidance
of an academic mentor.

During the four-week Course Stage, the participants
learned about the basics of Quantum Computing, re-
ceived an introduction to the foundations of Quantum
Mechanics, had the option to explore the mathematics
underlying Quantum Mechanics, and were introduced to
the world of academic research. In a series of workshops
they also started to develop important soft skills of a re-
searcher like scheduling and time management, effective
learning, personal knowledge management, project man-
agement, paper-writing, and poster-making. Throughout
the programme, they had to complete and submit work,
either individually, or in a team.

Participants who successfully completed the Course
Stage moved on to the five-week-long Research Stage. Af-

ter choosing a Quantum Computing project, they worked
in teams of two under the guidance of a mentor, while at-
tending talks by academics and industry experts on ad-
vanced topics and applications in the subject.

Quantum Computing stands poised as a state-of-the-
art technology to revolutionise numerous sectors, from
drug discovery and material science, to financial model-
ing and artificial intelligence. The programme served as
a vital platform to introduce talented young women to
this multifaceted field, as well as to the world of research.
It has been our focus to empower our participants and
give them a head start to become future subject experts
by educating them on the basics, equipping them with
the essential skills to excel, and offering them their first
research experience, where they could apply what they
had learnt.

We extend our sincere gratitude to our co-organizers
and many volunteers for their tireless efforts in making
this programme a success. Our special thanks extend
to our academic mentors Prof. Dr. Gerhard Hellstern,
Dr. Filip Bar, Manuel Rudolf, MSc, Kathrin Koénig, MSc,
Vanessa Dehn, MSc, Andreea Iulia Lefterovici, MSc, Vic-
toria Hazoglou, MSc, Jannes Stubbemann, MSc, Mo-
hammed Alabdullah, MEng, Sanskriti Oza, BSc and Juw-
eria Sayed, BSc. Their guidance and patience were essen-
tial for our participants’ success. We also acknowledge
our participants whose contributions form the backbone
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https://girlsinquantum.com/
https://www.linkedin.com/in/prof-dr-gerhard-hellstern-57b3127b/
https://www.linkedin.com/in/filip-bar/
https://www.linkedin.com/in/manuel-rudolph/
https://www.linkedin.com/in/kathrin-k%C3%B6nig-8722a71b4/
https://www.linkedin.com/in/vanessa-d-730005142/
https://www.linkedin.com/in/andreea-iulia-lefterovici/
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of these proceedings.

The research projects showcased in these proceedings
span a diverse range of topics and applications, from
fundamental Quantum Computing concepts to Quantum
Machine Learning. These projects represent a significant
advancement beyond the Course Stage of the programme,
posing a considerable challenge to our participants - many
of whom were newcomers to Quantum Computing by the
time of their application.

We commend all participants for their remarkable
dedication and success in overcoming these challenges,
and invite you, the reader, to appreciate the culmina-

il

tion of their intellectual labour and curiosity within these
pages. We are proud to present their accomplishments
and trust that their work will inspire countless young
minds aspiring to become researchers in STEM.! We are
confident that these young women will continue to make
significant contributions to the fields of STEM, and we
look forward to witnessing their future accomplishments.

Chairs of IQRG
Dr. Filip Bar and Maria Delgado Alvarez

August 2024

!The code for each project can be found on https://github.com/ThinkingBeyond /IQRG-2024.


https://github.com/ThinkingBeyond/IQRG-2024
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VQE for Ground State Energy Optimisation of H,

IQRG 2024 Project 10B By Keisha Kwok and Inés Martin - Mentor: Jannes Stubbemann

1) Problem Statement + why it is hard 3) Using VQE 4) VQE's Problems and beyond

Variational Quant Eig | (VQE) is one computational approach to Lack of scalability
estimate ground state energies. Again we will use H; - it is the swmp\est molecule

to verify VQE with, since the output can be compared to theoretical calculations.

“ - , o
How to find a molecule’s ground state energy? Current VQE implementations are limited by the number
of qubits available. Moreover, for larger molecules, there
are more than one local minimum on the energy
Consider the simple molecule: H; = “How does VQE estimate H,'s ground state energy?” landscape, so the ansatz sometimes converges to one of
them that isnt the desired global minimum. This is why
‘D VQE in itself can't be used in molecules that have real-life
applications, e.g. protein molecules in biochemistry.

Motivation for finding it
A quantum system’s ground state energy is
the energy in its most stable state. This is
useful as it tells us how a molecule behaves
in low temperatures (where quantum

Its total energy consists of
« Kinetic energy
« Potential energy electrostatic potential

Our VQE uses Jordan-

’ T 0) isthe
effects are the strongest). energy amongst 2 nuclei & 2 electrons Wigner mapping to p— HK{”GH‘ }th“ Errors
« Gravitational potential energy (negligible) prepare  qubits  to (Hartroo-Fock state) | 4" T o o n ‘Gf Errors can be caused by hardware noise, ansatz
: represent Hy's electrons’ 19(0)) = [1100) initial guess SEelpier h inaccuracy or measurement errors. Mitigation
In quantum language: information % strategies such as zero-noise extrapolation enhances
P‘:’“Ti‘:! ’°°I'||i‘° ‘l'se‘c“’“ B=TiV_o State proparation with VQE's accuracy within its current limitations.
S R LR “r U(8) represents the varied BTl -
0 = SENIE) oW CRER i . . 5(8) AGh L Ongoing work to extend VQE
« — Studying superconductors gamileonian Kinetic Potential parameters 8 in ¢(6), which
ying sup _ = % ~(energy operator) energy energy varies the expectation Some examples to improve or extend VQE are:
- h s
"_—‘ value of H energy state o Suantum Crreutt + ADAPT-VQE: here the ansatz is dynamically built to
- X T e o improve its accuracy and compactness.
L ge= —— ey e (6(6)|H|$(6)) Quantum VQE is a « Overlap-ADAPT-VQE: avoids building the ansatz in
£ Our intention: To find the minimum 1 9y e = Tnegr @ T hybrid such a way that the»expeclat‘\on value falls into a local
energy by solving for the eigenvalue r, the distance between the 2 electrons, is impossible algorithm but not global minimum (likely for large-molecule
| of H in the Schradinger equation (SE) | to find since both electrons are moving (there is no Cxpirien cal simulations), thus improving the output's accuracy.
PR A ] centre of reference frame). Therefore we cannot find ” ‘ , valuation . . Quuntu@ thurgl Gradient: uses the quantum Fw‘sher
S e — this term's exact value. is involves  the - information matrix to perform optimization respecting
classical  gradient P":cess” = b the geometry of the parameter space
descent method to @liEll U (228
Therefore, our original intention cannot be carried out directly. The Coulomb electron- optimise parameters Convergence? parameter | || converged
© > h ! ' No| optimisation valve
electron repulslon terms makes it |mposs|b|e to find an exact solution to the SE for many- based on obtained v .
electron atoms and molecules, even for a molecule as simple as hydrogen. expectation value (optimisation) References
o « Fig 1 source: Qiskit Textbook
¢ Fig 2. Diagram for « Chow et al. (2015) “Parallel scalability of Hartree-Fock
; . . . "
Since we cant find the exact solution, 2) Computatlonql Estimations anr Vel elfgerfum: calevlations

Clary, Jacob M., et al. (2023)."Exploring the scaling
limitations of the variational quantum eigensolver with
the bond dissociation of hydride diatomic molecules.”
International Journal of Quantum Chemistry

Fedorov, D.A, Peng, B, Govind, N. et al. (2022). "VQE
method: a short survey and recent developments.”
Mater Theory 6, 2

Feniou et al. (2023) “Overlap-ADAPT-VQE: practical

approaches to make estimations. Required ideas for an algorithm to estimate a molecule’s

/ ground state energy \

Idea 1: Enable computation by encoding (Idea 2: Enable estimations with the Variational Method]
fermionic information

\
H
|
we turn towards computational |
H
H
|

What we expected from our code

Just like how the guess valve
converges to the target value in the
number-guessing game, we expect
the same to happen for our H, energy

A player in a 1-100 number-guessing game starts with 50, then

ioni i i expectation valve, °

We. need to map fermionic (electron) operators to (if target is less) guesses 25, then (if target is more) 38, etc. She is P! T G @ @i EamEer e s
qubit operators. A map translates creation and varying her guesses until the gaps narrow and the guesses get o oy S
annihilation operators that make up  ¢(6), into strings of closer and closer, i.e. converge, to the target value. O This was indeed what happened. S [2

" N ) . (@) « Grimsley, H.R,, Economou, S.E., Barnes, E. et al. (2019).
Pauli rotation operators (akin to spin). These, acting on o e ol e el el
the initial “Hartree-Fock state”, encode the electrons’ Here, we utilise the same variational principle. to estimate the Our code’s outputs K\ Soolthovariational B Grlefpifi waelileal cllgeiin o exact molecular
information into the quantum circuits. ground state energy. Just like 50 in the 1-100 game, we need a P [ e simulations on a quantum computer.” Nat Commun 10,

good first guess, ak.a. ansatz, to maximise efficiency. 3007

Figs 3 and 4 show
the optimisation

rocess: the more
i’iemﬁom done, Scan this QR code

S [ to access our code: We would love to hear your
questions and feedback on
our presentation. Thank you
for your interest!

Two common maps are the Jordan-Wigner and the el e8]
Bravyi-Kitaev mappings. - = Puriat0)H19wial0))
N e Eiriat = 4 u@atey = 0 @
This equation describes that for any trial wavefunction ¢, the ”
expectation value of the Hamiltonian E,,,; is an upper bound
for the ground state energy. The classical processor evaluates
how much the energy has converged by calculating the cost
function. Then, it provides U(6) to vary ¢(0) -

Fig 1. The Jordan-
Wigner mapping,
visualised.

expectation valve
= g converges to the
Fig 3: 95 iterations Fig 4: 200 iterations ~ target energy.

ThinkingBeyond
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1 complexity CLASSES

There are many algorithms to solve different types of problems,
categorized into complexity classes. Classes P, NP, and BQP are all
in the PSPACE, meaning they can be solved by a Turing Machine,
and use a polynomial amount of space. ™)

~
«P: Polynomial Time--problems that are easy to solve;

there is a classical algorithm that efficiently solves them.
<NP: Nondeterministic Polynomial Time--a

set of problems that are difficult to solve,

but easy to verify.

° NP-Hard: Problem Y is NP-Hard if X
NP-Complete problems can be reduced
to Y in polynomial time.

o NP-Complete: These problems are in NP,
and are NP-Hard.

+BQP: Bounded-Error Quantum Polynomial
Time--problems solvable by a Quantum
Turing machine bound by polynomial time.

PSPACE

Figure 1. details the relationship between the different classical
complexity classes: P, NP, NP-Hard, NP-Complete, BQP, and PSPACE. Up
till the point of writing, there is no proof that P = NP, or that PSPACE = NP.
However, BQP is believed to contain all of P and some of NP.

2) LSP, CGM, & HHL

Our goalis to solve linear system problems (LSP) with n variables (dimension
n). Let A be a Hermitian matrix, b be avector, andX be the vector to be solved.
Then we can write our LSP as:AX=b.

Many classical algorithms can solve this system, the fastest being the CGM
(Conjugate Gradient Method). CGM solves LSP with a complexity of O(n). The
quantum algorithm for linear solvers--HHL (Harrow-Hassidim-Lloyd)--can solve
these systems with complexity O(log(n)), providing an exponential speedup over
the fastest known classical linear solver.

3) HHL Algorithm

HHL has 4 main steps:
1.HHL estimates the eigenvalues of A%, \~!
2.Performs a controlled rotation on auxiliary qubit in accordance to the eigenvalues estimated.

3.Qubits in the main register are reset to |0)
O(log(n))

References: 1.Wong, T. (2023, July 29).

Visuals by Anagha P
Elements by Sergey Bitos

Created By: Anagha Padmasola, & Oneka Singh Mentor: Andreea Lefterovicl

The“”

=l 1qFT b

ouantum Complexity

4. The auxiliary qubit is then measured untill the result is |1)

Introduction to Classical and Quantum Computing.”
2. Anika Z. et al. (2023, March 25). “A Step-by-Step HHL Algorithm Walkthrough.”
3. Indranil G. (2021, July 29).“Conjugate Gradient Method
4. Louis C. (2023, Feb. 22). “

Group 18: Quantum Complexity (and the HHL algorithm)

T -} .
Circuit : ﬂ

Sute A change in basis from computational (| ))andm) :N;»

Preparation ~ o

to the Fourier basis: computational basis (|-)and|+)) =

* The IQFT circuit consists of 3 parts:

o |

1.The swap gate is applied to 2 qubits to swap their states
2. Rotation gate creates an interference pattern to generate Fourier states
3. Use Hadamard gate to create equal superposition of qubits

L]

5 Numerical Example

This numerical example will solve a sample AX'= b problem for a real %.

We will put both CGM and HHL to the test, and see the results they yield.
) 1 . B
HIHL Algorithm 3¢ 4= 38).5-(2) @)+ ()

3 : 7 7

& the

Both HHL & CGM result in: % = (1 )

0.60 | | 0.564

Only the b register and ancilla
qubit are measured, so there are 4
possible outputs. We only care
about the [1) results, which are 01
and 11. The ratio between these
2,0.063:0.564— 1:8.95, is close
to the expected value of 1: 9.

Probabilities

Abstract

In this poster, we present the classical and quantum complexity of
linear solvers: we compare CGM and HHL asymptotic complexities (Big-O GO0 5 e
notation), and lightly explain the components of the HHL algorithm. The A A ~

goal of this poster is to show how the HHL algorithm solves an
6 Practicality

LSP and its scaling.
Current architectures do not support using HHL
for large practical LSP, due to a lack of qubits,
coherence problems and noise. HHL is well
suited for fault-tolerant quantum computers.

of the matrix, using Quantum Phase Estimation.

o
N

Probabilities

D*ﬁD

rd. f
T

e i rﬁ Running HHL on quantum hardware yields

Eas 0.142:0.361—1:2.54, far from 1: 9.

HHL Algorithm for LSP.” Our Paper:

~ ~
S ~

Introduction to Quantum Research by ThinkingBeyond x Girls in Quantum

ThinkingBeyond
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What is a QUBO problem?

QUBO stands for "Quadratic Unconstrained Binary Optimization”, it is a
mathematical framework which allows to reformulate many Combinatorial
Optimization problems (CO), often NP hard, and is widely used in quantum
computing. QUBO serves as input for algorithms like QAOA, which has the
potential to solve these problems exponentially faster. [1]

QuBO

Minimize/Maximize

y=1z'Qz

Combinatorial
optimization problem

Finding the “optimal” — >
combination from set of Refammultiing Smilem;
all combinations Vector of binary reatvaluec
matrix

variables representing

Eg: MaxCut problem different combinations

Gana Gangadharan, Gabriella Xenia Talarico - Mentor: Vanessa Dehn

What is MaxCut problem?

Node
Problem: How to make a partition of nodes

a
Weight Edge into two disjoint subsets (0 and 1), such that
‘\ _A total weight of the edges between the two
1 1 Index subsets (also called “cuts”) is maximized.

b ¢

Fig 1: Example for a graph 1,nodes i and j

= are connected
wij =

Cost Function: ¥ = Z wij[zi(l - zj)] 0, not connected
ij

Cost Value(©01)= 0(1—0) +0(1-1)+1(1-0)+0(1-1)+1(1-0)+0(1-0) =2
ab bc ca ac cb ba

Optimization problem

QAOCA

Results for the example problem

Abstract: Combinatorial Optimization problems are often NP-hard and therefore hard to solve classically. To tackle this, the

QUBO instance

Quantum Approximate Optimization Algorithm (QAOA), a case of variational quantum eigensolver, was found, which gives

Code & Solution

approximate solutions to these problems. To implement the QAOA algorithm for Maxcut, we studied the general QUBO

Correlation to physics

Hamiltonian  [y(t)) = U(£)[$(0)) = e #*[(0))

¢ Operator which describes the total energy of a system

e Time evolution of the state of a quantum system can be
expressed in terms of an hamiltonian acting on it.

Ising Model lT H(o) = —ZJijO’ia'j _ I‘Zh"dj ge-1,1
(i) J

* Mathematical model in statistical mechanics to study magnetic dipole
moments of atomic “spins”.

¢ The QUBO formulation and Ising formulation are isomorphic. Solving
QUBO is equivalent to finding the Ising groundstate: the ground-state
configuration of a N-qubit Ising Hamiltonian.

Scan to read our
implementation
of the QAOA

Scan to read our
literature review

algorithm for - for this project!
MaxCut!

obtained the expected solutions.

QAOA algorithm O

QAOA is an algorithm introduced in 2014 [2] which finds approximate
solutions for QUBO instances. By encoding the cost function as a
Hamiltonian Hc, its ground state would correspond to the solution.

0
|0y>—{H}——cost szvs:r — A=
— A=
Ue(p)
— A=

layer
l0>—{H}—
Classical optimiser (—/

Ue(m)
QAOA mimics adiabatic evolution from the ground state of Hu to the ground state of Hc.

Cost layer Mixer layer

() = e U(Hy) = e

o —
\- ; New parameters

Fig 2:QAOA Circuit

Adiabatic quantum computation is a way to
compute the ground state energy. QAOA ansatz
is inspired by adiabatic theorem.

® .21

formulation and its similarity to the Ising model. We implemented the algorithm for a six-node Maxcut problem using Qiskit and

How to solve MaxCut with QAOA

The graph we
have chosen:

There is a connection between
node O and node 2

® ° 0

o.[e.
1.[1.

(200210 Lo LIS L)+

(208 ®Z @ ;9 1; ® I+

(1h®219L® 201 Is)+
3.[e. (Hh®h®2:©20 Lo L)+
4.[0. ( )
s.[e. (

Jo@L®L®Z3®Zi®I;)+
I/ ®h®L®I;® 2@ Zs)

Cost hamiltonian for
the example graph

‘There is a connection between

Weight matrix for the example graph "¢ 3andnode 1

References:

ntum Bridge Analytics I: A Tutorial on Formulating

Sam Gutmann. "A quantur

Sptimization pre
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FIGURE 2: ARCHITECTURE FOR OUR RECOMMENDER SYSTEM

User )

personality =——|

input Noraatize

Traits of
songs he —=——>>
might like

Recommended
songs

6.CONCLUS|ON:

Although quantum computers promise to revolutionize the
engineering world, in the “Spotify case” we might not be
able to see an advantage soon and most of the future
recommendations systems would probably use machine
learning ran on a classical computer rather than on a
quantum computer. However, quantum computing might
give businesses in the music industry an advantage by
leveraging the “true randomness” and recommending
“random songs” to users. However, personality of the

ﬁ.PROBLEM

user integrated in the app was proven effective.

Even though the first recommender system was centered on
personality traits and goals of the people (Grundy), most of the
modern ones do not correlate these things with the
recommended content, but rather create a hybrid ecosystem
based on Collaborative Filtering (CF) and Content Based
Filtering (CBF). This seems a bit counterintuitive, but let’s
analyze the Netflix case. When Netflix firstly started, they would
ask the users many questions related to their ethnicity, gender,
movie preferences. They soon removed this feature because it
was a burden for the users to complete the survey and the users
were not the best at deciding what they like and what they don’t.

However, we do know that incorporating personality traits of a
Qser improves their recommendations by 3-28%.[1] /

For this we trained our model on a dataset (PER_dataset) that
connected certain characteristics obtained through the Big Five
personality test (best test in the field of psychology) to
respective song traits (liked by participants in the study with a
song reviewing app called “Music Master”) [5]

The algorithms were written using Python with the necessary
modules installed. (NumPy, Pandas, Scikit-Learn for data
processing, and also Qiskit and others for quantum algorithms)
First, the di ionality was reduced using a PCA algorithm.
Then we implemented a quantum circuit (a variational ansatz and
measurement) and encoded the cl L data using

encoding (we used Ry gates). We initialized the parameters, built
a prediction function that takes user personality input,
normalizes and reduces it, then uses the QNN to predict the song
features which the user might like. Then these features would be
given to the Spotify API for song recommendations based on

the mean square error.

5.METHODOLOGY: \

that. (see Figure 2) In the end we tested our model by checking
! T j \ _IMPROVE THE SYSTEM?

Some agree that quantum compu-
ters can outperform classical
computers in recommendation
tasks, due to their lower Big-O
complexity (for matrix inversion the
complexity for a classical computer is O(N?), while for a quantum
computer O(log(N)?) [3]

Others think QML can’t outperform existing solutions. Quantum
computers usually struggle with the linearly separable benchmark. A
new study also suggests that by r ing the L between
the qubits the models gave better results. [4]

We concluded that, since quantum machine learning can’t outperform
machine learning, and Spotify’s issue with their algorithm is diversity,
the best approach to improve the recommendation system of Spotify
would be to leverage the “true randomness” of quantum computers
and combining it with the Spotify API. However, we still tested a QNN to
see how it performs.

4.CAN QUANTUM COMPUTING

3.USERS OPINIONS

On data collected on 27 people about the recommender system of
Spotify, we concluded that the opinions on the recommender system
are divided. 8 people said they would prefer no music suggestions, 8
said the system is very efficient, 6 said that they would prefer more
diversity in the recommended songs. One study also classifies the
Spotify algorithm as the “least diverse.”[2] (see Table 1)

Table 1: Similarity Coefficients of Music Services

online trends fron
your *taste profile”

Input data=————= External data

your friends data

Input playlists Recommendation output

Spotify Pandora Apple YouTube Lastfm Average

Low 0.510 0.681 0.606 0.448 0.446 0.427 0.522
Medium 0.289 0.538 0.282 0.313 0.239 0.236 0.322
High 0.084 0.217 0.195 0.101 0.092 0.266 0.174

0.479 0.361 0.287 0.259 0.310

Your playlists,

gender, based on CF and CBF Output :

location etc Songs based

Your data on your
Music you interests
listen to

processing \l/

Builds your taste profile

FIGURE 1: ESTIMATED SPOTIFY ARCHITECTURE

2.SPOTIFY RECOMMENDER

Spotify uses a combination of CF and CBF when it comes to the
recommender system. They get specific data about the user (their liked
songs/playlists) and they build a user “taste profile”, which they use
afterwards for their recommendations, after the CF/CBF was done.
(Figure 1)

A programme led by ThinkingBeyond
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CLASSICAL: GROVER:
N/2 = O(N) evaluations O(/ N) evaluations

w
a
=]
=
o
o
=
<

GRAPHICAL EXPLANATION OF
GROVER’S ALGORITHM

EQUATION FOR APPLICATION OF THE H GATE:

o Linear(aataset): AFTER H-GATE
n;imm o i . i in e st APPLIED TO
(e i 1. VAT e sased o she ¥ QUBITS

“Time (seconds)
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Carbon Forecasting

The issues of carbon emi
in such a way that as society has progressed and developed, the
environment has gradually downgraded and degenerated to a great
extent. Since the Industrial Revolution, humans have emitted over

1.5 TRILLION METRIC TONS OF CARBON DIOXIDE

To properly deal with these issues, it is necessary to gauge an
accurate estimate of the amount of carbon em

environment. To do so, a number of Carbon Emission Prediction
Models (CEPMs) have been developed, each witi il
accuracy and efficiency. This project intends to explore two
such CEPMs and compare them, namely Recurrent Neural
Networks and Quantum Recurrent Neural Networks.

Further Steps

It is true that, at the moment, the QRNN is being
outperformed by the Classical RNN. However,
numerous papers and research articles lead us to
believe that this outperformance is only due to the
lack of research in the field and the presence of noise
in quantum hardware. It can be said that, with due
advancement and research in the given field,
improved quantum hardware, and development of
more efficient quantum algorithms, there is a very
good chance that QRNNs will provide even much
accurate results than their classical counterparts.
However, to conclude for this project, currently with
the ited available resources, RNNs are more
efficient and more accurate than QRNNs for use in
CEPMs.

ions and global warming are intrinsically related

L

Carbon Emissions (ppm]
]

Methodology

This project utilizes Google Colab as the environment to
run its code. Both models were trained and tested using
data pert: g to carbon emissions from 1958 to 2023
which was obtained from Scripps Institute of
Oceonography’s CO2 programme ated in 1956). The
data was split into two parts, with the data for 1958 to
2010 being used to train the models, and the data from
2011 to 2023 being used to test the models. The graph
comparing both models’ tests is given here. Tensorflow
was used as the primary language to develop the
Recurrent Neural Network, while the Quantum Recurrent
Neural Network was developed using a Pennylane
integration into Tensorflow.

#

2012 2014 2006 2018

Quantum Recurrent Neural Networks

Quantum Recurrent Neural Networks (QRNNs) are similar
models to Classical RNNs, but they integrate quantum
computing principles to enhance their predictive accuracy. In
this project, we developed a hybrid model consisting of a
quantum layer and two LSTM layers followed by a dense layer,
leveraging the advantages of both types of layers.

First of all, the input is given to the network. The quantum layer
encodes the input data into qubits and entangles them so that
they become correlated. The next stage of this layer estimates
the values of the qubits when Pauli-Z operators are applied to
them. Next, the LSTM layers sift through the data and identify
dependencies and correlations in it. After learning the trend,
the final dense layer combines and unifies all the information
that the network has gathered into a single output which is
then provided to us.

The QRNN is seen to perform drastically below how
the Classical RNN performs. Although the Classical
RNN has an RMSE of only about 0.07, its quantum
counterpart has one of over 60. The reason for this is
the high noise level in current quantum hardware,
along with underdeveloped quantum algorithms. With
advancement and progress in both of these sectors, a
huge improvement can be expected in these results.

Input
Quantum Layer
LSTM Layer
LSTM Layer
Dense Layer

Output

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of artificial neural
network designed to recognize patterns in sequences of data, such
as time series. RNNs work by maintaining a hidden state that
captures information about previous inputs in the sequence. This
hidden state is updated at each time step, allowing the network to
retain memory of previous inputs while processing new ones. This
feature makes RNNs ideal for tasks like time series prediction,
sequential learning, natural language processing, and more. In this
project, we implemented a more advanced form of RNN known as a
Long Short-Term Memory (LSTM) network. LSTMs are capable of
learning long-term dependencies, which is essential for accurate
time series forecasting. They help solve the vanishing gradient
problem by capturing and saving these dependencies with the help
of gates.

Input
LSTM Layer
LSTM Layer
LSTM Layer
Dense Layer

Output

This model begins working when an input is provided t

LSTM layers follow this, which capture dependencies and identify
patterns in the data. The final dense layer unifies all the data to a
singular output which is provided to us.

For this project, we utilize the Root Mean Square Error (RMSE)
metric to judge the accuracy of bof jodels. As seen here, the RNN

performs extraordinarim RMSE of just 0.07.
.
y %

Quantum Computing

While the RNN performs tremendously well in these
circumstances, this is not always the case. Even with the improved
LSTM Network, there are issues of computational complexity,
gradient issues and memory limitations. Ad nally, even though
the LSTM Network is a huge step from Classical RNNs in terms of
capturing long-term dependencies, its functionality is still quite
limited. A step forward is the implementation of quantum
computing concepts into this network. By implementing the
principle of superposition, the computer can explore a large
number of possil ies at the same time, and
the principle of entanglement plays a role in
identifying dependencies and correlations.
In general, quantum computing concepts can
the network in being more efficient and
making more accurate predictions.

Scan for
supplementary
material and
references!
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Energy Excited states

Q7
Ground state (
Fig 1: Energy States in an Atom (Wikipedia)

S

Using VQE and QPE for Chemical Problems
\ Maitreyi Muralidhar & Verity Greenald ‘: w |

|

Fig 2: Quantum VQE (Liu et al, 2014)

Classical computers are inefficient in simulating quantum systems such as the atomic structures studied in chemistg))/. However, using quantum hardware to
SE).

simulate quantum systems gives good results, for example in finding the Ground State Energy of molecules (G
E%qensolver( VQE) and Quantum Phase Estimation (QPE) in find‘; (

The Principles of VQE:

Code Architecture: VQE

We used the Variational Quantum

ng the GSE of simple molecules.

Further exploration:

During the course of our research we

Findings:

The VQE finds the lowest eigenvalue of a given TR o Tl ey
. ' : | q EroctEneray S s particularly
Hamiltonian of a chemical system. It is based on the = QuantumPart Classical Part oo weuss’| yyith the code for QPE due to a
Variational Principle: - Estimated y ” limited time frame:
Defln]ng the Mapper 3 e Import libraries in Qiskit-
)‘min S <H> ) H l . lowest . . i updated version meant we
1= A amiltonian Eigenvalue e Pauli Strlngs H struggled to fix the code
Eq 1: Variational Principle ) to represent LN _0© Diagram ir_zcunsi.s‘[em’iesfur QPE
The VQE is a hybrid algorithm making it suitable for h l’)” :7(’11"3 f’;f’E“’ el o
the NISQ era. ( ) the be able t very our daty and get
° Quantuln'l pfart iIS involved in finding the minimum Finding the o L. Hamiltonian ) %% % more accurate results. We are
eigenvalue for the matrix. [ ey — un optimizer e Ansatz used . . ~ going to take this another step
e Classical part optimizes the variational is UCCSD Fig 6 Energy at various interatomic  further.
parameters. /
§ » True VQE QPE
Il?ly modelling a molecule’s Hamiltonian for a Simulator S S
ermitian Matrix and maklng good ansatzes for the Parameters for . " AerSimul- Circuit depth @ Circuit depth @
trial wavefunctions, the algorithm can find the Ansatz ECSIIEIEIIS ¢ interatomic distances = 26 interatomic distances = 43
ini i i i i ator o
minimum eigenvalue at various interatomic Depth depends on ansatz | Deep circuits due to QFT

distances equivalent to the molecule’s ground state

and molecule and CUT

energy. Fig 4: Si VQE
o Struetureof V2 QP E Works well with NISQ Needs Fault tolerant
The Principles of QPE: 1.Create the molecule (LiH) devices because of hybrid Quantum Computers
nature

The QPE finds the eigenvalue of the eigenvector 2-Create hamiltonian and restrict it within range

given the matrix. We can express this as: [0,1— (%)"} Accuracy depends on More qubits leads to more
0 . ) . . . . ansatz quality and precise GSE
U| v) — e |fv> 3. Construct QPE circuit using this hamiltonian, run and optimization approximation
) analyze results of energy and distances
Eq 2: Representation of QPE 1 1 .
Other key uses of o) —{#} — Blbllograthj o . ]
QPE include: Thanks to the entire ThinkingBeyond + Girls in
Controlled e , uantum team, Dr. Filip Bar and our mentor Ms.
Initialization Unitary * Shor’s 1) —{#} ictoria Hazoglou for guiding us through the
Operation algorithm ) OFT' ) research process!
e Quantum : 2 :
Inverse Quantum simulations [0) {H} .
Measurement + . . S t
imati Fourier « linear systems LEWEY
phase estimation et . [v) 90 g1 .. view our
of equations U U sources
Fig 3: Structure of QPE algorithms Fig 5: QPE Circuit (LaRose)
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USING VQE FOR OPTIMISING CHEMICAL PROBLEMS

Classical computers are inefficient in parametrising quantum systems. Using quantum hardware to simulate quantum systems provides
promising results, particularly in finding the Ground State Energy (GSE) of molecules. This poster explores the application of the Variational .
Quantum Eigensolver (VQE) and Quantum Phase Estimation (QPE) in determining the GSE of simple molecules. ‘

1.Abstract

We aim to find the most reliable and efficient way of calculating GSE to date.

This study focuses on optimally using VQE algorithms to find the GSE of molecules. We focused on the hybrid quantum-classical algorithm, because it is . I .
well-suited for the current Noisy Intermediate-Scale Quantum (NISQ) era, while QPE requires more advanced, fault-tolerant quantum computers. ‘ . .‘

2.Questions and methodologies

What is the most efficient VQE algorithm
to calculate GSE of simple molecules?

ional Quantum Eigensolver (VQE;
on the V: ional
o find the lowest
familt: 3
Approach: mbines quantum
and classical computa
uantum Part: Inv onstructing

typically
le for NISQ devices.

Precision vs. Number of Qubits

ep quantum
Quantu
) and Controlled Un

Comparison of VQE and QPE

‘Circut Depth ‘Qubit Requirements.

S @

o

3.Research, code and findings

VQE is a family of algorithms. They can be differenciated by
two parameters: the ansatz and basis used in estimations.
We simulated VQE using different ansatzes and bases to
find the most optimal combinations - ultimately, to
streamline the computational process.

We compared the effects of four algorithms and five basis
sets on 4 molecules: LiH, He, H and Be. \We focused on these
molecules because of the ease of calculations and their
applicability in the field of fusion energy and engineering.
Our findings are behind the QR code.

o °
o o o _atZ PauliTwoDesign ﬁ‘%-Zly”

s

o N o better
4.Applications and benefits batteries
« Molecular Energy Calculations
« Finding the GSE of molecules to understand chemical properties and
reactions.

« Potential applications in drug discovery and material science.

« Optimization Problems

« Application of quantum algorithms to solve complex optimization
problems in chemistry.

« Quantum Chemistry Research efficient
« Advancement in quantum algorithms to improve the accuracy and screens
efficiency of chemical simulations.
« Use of VQE and QPE as teaching tools to ilustrate quantum
computing concepts in chemistry.

reliable drugs

cleaner energy

ThinkingBeyond
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Abstract
<

/3

Why VQC?

7

e
\

VQC can be applied to compress and represent high-dimensional data,
such as network traffic or system logs in a more compact and meaningful
way. This can facilitate the identification of patterns, anomalies, and
trends that may indicate potential security threats. They also offer
several advantages over classical machine learning algorithms and some
quantum algorithms such as Improved Performance, ability to Learn
Complex Relationships, improved accuracy, flexibility, robustness to
noise, and interpretability.
In the following table, we will compare a classical algorithm (SVM) with a
@ﬂum algorithm (VQC)

)/ What is VQC? \(

Variational Quantum Classifiers (VQCs) are a type of hybrid quantum
machine learning algorithm that can be used to solve a wide variety of
classification problems.

It consists of two parts :

A classical part for pre- and post-
processing data

A quantum part for harnessing the
power of quantum mechanics to
perform certain calculations more
efficiently.

l0) R

ISR )

Cost function
10) X

Feature Variational

map circuit 4 Optimi:
updates 0

There are some steps to follow to have our output Y:
1- Encode Classical Data into a Quantum State
2- Apply a Parameterized Model
3- Measure the Circuit to Extract Labels

kOptimize Model Parameters /
Vd

. References

1{Hi)'glund, R., Tiloca, M., Selander, G., Mattsson, J. P., Vu¢ini¢, M., 8’\
Watteyne, T. (2024). Secure Communication for the IoT: EDHOC and
(Group) OSCORE Protocols. IEEE Access.

2- Highnam, K., Arulkumaran, K., Hanif, Z., & R. Jennings, N. (2021).
BETH Dataset: Real Cybersecurity Data for Anomaly Detection Research,

Processing
pipeline

=i

3 Future applications ¢
QML can analyze complex data patterns, which makes it ideal
for spotting hidden threats in network traffic and user behavior.
Future advancements in quantum hardware and QML
algorithms and addressing problems such as error correction,
noise reduction, and efficient implementation will unlock its full
potential for building next-generation cyber security systems

~
A programme led by ThinkingBeyond m f(’)
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CARBON FOOTPRINT FORECASTING BASED ON
BY AFREEN HOSSAIN AND FARHEEN

QUANTUM RNN

Why is Carbon Footprint Forecasting
Important ?

¢ Fight Climate Change: Helps us see future
pollution levels and take action to reduce them

e Better Plans and Policies: Helps governments
and businesses create good rules and improve
how they work to be more eco-friendly

¢ Manage Risks and Innovate: Helps find
financial risks and encourages new, green
technologies

-

METHODOLOGY

Data

Feature Engineering

We selected year, month, average as
the relevant features among others
giving more emphasis on average

Data Processing
Handling missing values and
normalization using MinMaxScaler

Classical RNN Model

> Preprocessing

Handling missing values, normalization,
and sequence creation

> Training

80-20 train-test split, trained for 50
epochs using Adam optimizer and mse
loss function

Quantum RNN Model

[P Preprocessing
Similar to the classical RNN

Architecture<
SimpleRNN with 50 hidden units
and a dense output layer
Evaluation«
Test loss evaluation and
predictions for the next 24 months

Model Architecture

Hybrid model combining classicaﬁ__) Quantum Circuit
RS RHGU= ayen Angle embedding and basic entangler
Traininge (ayers
1000 epochs using Adam

ShitR [ Evaluation

Validation and test loss evaluation,
predictions for the next 24 months

Training and Validation Loss

Predicted Monthly Average CO2 Levels for 2023-2024 using RNN and Qu

I vs Predicted Monthly Average CO2 Levels

022)

2020
Jantum RNN) (2023-2024)

Carbon footprint forecasting is
essential for climate change
mitigation. This study compares
traditional Recurrent Neural
Networks (RNN) and Quantum
Recurrent Neural Networks (QRNN)
in predicting atmospheric CO2
levels. The models were trained on
\ historical CO2 data from 1958 to
2022 of California region

L J

FUTURE RESEARCH

e How can the optimization strategies for hybrid
models combining classical RNNs and quantum
layers be further refined to improve convergence
speed and model accuracy?

¢ What are the optimal circuit architectures and layer
configurations within quantum layers that enhance
predictive power and resilience to noise?

accurate prediction capabilities. Our RNN outperforms
others and delivers more precise results. We have
fine-tuned our RNN model, with the most suitable
optimization and loss functions to adjust weights
effectively.

However, Quantum RNNs (QRNNs) have seen less
research compared to RNNs. Despite this, we have
made every effort to incorporate all available training
methodologies.

We are exploring potential enhancements such as
integrating quantum layers more effectively and
improving the optimization functions to further
enhance our model's performance.

<QCAN FOR

REFERENCES

SCAN FOR

CODE AND

CONTACT
INFO.
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Quéhtum COmpufing"“
I Concepts with Qubit

Manipulation

. To understand and visualize how quantum gates work, we use
several tools:
A Bloch sphere is a 3D sphere that shows the state of a qubit.
Think of it as a globe where the poles represent the classical
2 states 0 and 1, and any point on the sphere represents a
possible qubit state. (see: figure 1)

Matrix Repr ions as sh in (figure 2). Quantum
gates can be described using matrices (arrays of numbers).
These matrices show how the gate changes the state of a
qubit.

Furthermore, we can use circuit diagrams (see: figure 3). These
diagrams show how multiple q gates are |
and interact with qubits, similar to how electrical circuits are
drawn for classical computers.

SEE THE
APPLICATION
OF OUR
RESEARCH

1 INTRODUCTION

Qubit is a (basic unit of quantum information) it is like a
magical bit that can hold both 0 and 1 at the same time,
but in a special way, it's more like a quick switch between
0 and 1 that can't be directly observed until measured.
In classical computers, logic gates simply flip bits between 0
" and 1, like flipping a switch. But quantum gates use the magic
of qubits; like superposition (holding both 0 and 1

11

simultaneously) and entanglement (where one qubit's state &~ \ WHY DO WE USE QUANTUM

depends on another's), These unique properties allow qubits
to perform much more complex operations, giving quantum
computing its edge over classical bits.

Using the Bloch Sphere to Show Quantum 3
Gates:
The Bloch sphere is a way to see the state of
a qubit in a 3D by seeing where the arrow is
pointing
Hence here in (figure 4), we can figure out
that the Initial State is |0).
When Applying the X Gate
The X gate flips the qubit's state froml 0> tol 1>
hence the arrow will be pointing at (south
pole)as shown in (figure 5).
That is why The Bloch sphere helps us
visualize how quantum gates like the X gate

5y
> y

manipulate qubit states. )

figure 6

LOGIC GATES

Firstly, we use quantum logic gates for complex
operations; quantum gates do complicated tasks
that classical computer parts can't do. They use
quantum mechanics: superposition and
entanglement. Secondly, quantum superposition:
q gates (for H-gate) can make
qubits exist in many states at once. This means they
can do many calculations at the same time, making
things faster. Thirdly, quantum entanglement,
quantum gates can link qubits together. When
qubits are linked, knowing the state of one tells you
about the other. This can make computations more
efficient. Fourthly, parallel processing, with
superposition and entanglement, quantum
computers can check many possible solutions at the
same time, speeding up probl lving. Fifthly,
building quantum circuits, quantum gates are the
building blocks for quantum circuits. By combining
them, we can make powerful quantum algorithms.
Finally, running quantum algorithms, quantum
gates run special algorithms like Shor’s for breaking
large numbers and Grover’s for searching data.
These can do things much faster than regular
computers, which is very useful for security and
data.

REFERENCES

Wikipedia, Quantum Logic Gate
Universal Quantum, Quantum gates explained
(without the maths), Medium

ThinkingBeyond, GirlsinQuantum, Preparation for

the Quantum Computing course - Week 1
figure 1:

" ThinkingBeyond, GirlsinQuantum, Preparation for

the Quantum Computing course - Week 2

figure 2:
Wikipedia, Quantum Logic Gate
figure 3:

‘ThinkingBeyond, GirlsinQuantum, Preparation for
the Quantum Computing course - Week 2
figure 4:
‘ThinkingBeyond, GirlsinQuantum, Preparation for

To code quantum circuits: the free resource, google.colab, is
a great way to organise your python coding and is great at
showing steps in digestible ways. To use google.colab, you
need to understand the essential Python code to d load

other tools such as Qiskit, which is an open-sourced software

development kit used to program quantum computing.
However, Qiskit is not the only software you can use,

P yl , for le, is a cross-platform Python library
used to program puting. To use P yl , you
must have Jupyter Notebooks installed alongside Pennylane,
then using the required code, import Pennylane onto Jupyter

Notebooks. For Qiskit, you must first install the software

using the required Python code to do so.

To Apply and code quantum computing concepts, 5 -
we use platforms such as: Qiskit in Google Colab =5
(QR code 1), IBM Quantum Experience (QR code 2)
(Scan the QR codes to access these platforms
directly)

These platforms provide tools and resources for
running quantum computing experiments and
simulations, empowering researchers to explore
the potential of quantum computing in solving real-
world problems.

ThinkingBeyond



12

Introduction to Quantum Research for Girls
2024, Inaugural Cohort

if IQRG

PROGRAMME

SECTION B: EAVESDROPPING AND BB84 PROTOCOL

QUANTUM PRINCIPLES

QUANTUM KEY DISTRIBUTION PROTOCOLS

Quantum Key Distribution (QKD) addresses the vulnerability to
interception by detecting eavesdropping. There are two kinds of
QKD protocols. The prepare and measure QKD protocol uses
Heisenberg’s uncertainty principle . This protocol depends on the
fact that once Eve intercepts and measures the photons, the
quantum state will be altered. The second QKD protocol depends
on entanglement where an entangled photon is each sent to Alice
and Bob . Any changes to one photon will instantaneously affect the
other photon.

Quantum Key Distribution can help us to trasmit the key between
two users in a secure manner so that no one can intercept it and by
extension eavesdrop into the conversation.

SOCIETAL IMPACT

Adopting quantum cryptography can have a lasting
impact on our society. For example , banking
transactions that rely on classical cryptography can be
more susceptible to attacks. Also, in social media
accounts, QKD can be used to secure sensitive data and
even detect if there is an eavesdropper. Most
importantly, the healthcare sector also stores private
patient data which on being intercepted can also
threaten the lives of these patients.

INTRODUCTION

Classical cryptography relies on mathematical
complexity and time consumption to deter
decryption. Though in any kind of cryptography
method, the key exchange process is vulnerable to
interception. Quantum Key Distribution (QKD) detects
this eavesdropping (interception), without relying on
complex math or long-time requirements to facilitate
secure communication.

GLOSSARY

ALICE: sender
BOB: receiver
EVE: eavesdropper

Discover

more:
code of BB84
protocol and

report

BB84 PROTOCOL

BB84 was developed by Bennett and Brassard in 1984 and it was the
first quantum key distribution protocol ever designed. It is based on
the no-cloning theorem and on the fact that the state is altered
when measured. It is provably secure given that information can
only be gained by disturbing the signal applied when the two states
being distinguished are non-orthogonal, by the no-cloning theorem
and the existence of an authenticated public classical channel. Many
QKD protocols are based on the BB84. In BB84, Alice prepares
quantum states (photons) in one of two bases chosen. Bob
randomly chooses a measurement basis to decode the information.
If Eve measure this these transmitted photons she cannot replicate
the exact ones sent due to the uncertainty principle.

PROCESS

Alice <— Communication Channel —» Bob

v '

Generates string / Measures polarisation
+ - v

Send polarised pulses Public basis

r's Y
HV D/A

Public basis

Use the same —l Remove different ones

Noermor «—— Key composed ——» Eror

v v

BB84 repeated

EAVESDROPPING ANALSYSIS

Eavesdropping is a form of cyberattack wherein
someone secretly intercepts or modifies the data
without awareness of the parts. In BB84 Eve measures
the qubits when they are in transmission from Alice to
Bob, basically measuring them. This measurement can
change the quantum system. By comparing the basis
of Alice and Bob we can find if there was an
eavesdropper in the conversation by using quantum
error detection.

A programme led by ThinkingBeyond
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Understanding Quantum Teleportation

Prayanshi Garg, Parthavi Chauhan

Mentor:
Ms Juweria Sayed

Introduction \ [

Quantum teleportation is the transfer of an
unknown quantum state over long distances
without actual physical transfer. This process
works on the principles of entanglement. In
this research project, we will review the
quantum teleportation protocol, applications
in secure communication, cryptography and
quantum network. Along with this we also
employed the quantum flytrap game to

visualize the results.

Applications

PP @®
/~  Secure Communication U@Q\

Quantum Teleportation provides unbreakable encryption and is
immune to classical computational attacks. It can detect
eavesdropping as interception disturbs entangled particles and
triggers alerts. Quantum Key Distribution (QKD): Secure Key
Creation: Establishes cryptographic keys via quantum
entanglement. Quantum secure communication protocols, such
as BB84 and B92, utilize the principles of quantum mechanics to

establish secure and unbreakable communication channels./

Quantum Networks:x‘ and Cybersecurity

As quantum computing threatens traditional cryptographic systems,
post-quantum’ cryptography (PQC) offers a robust solution. PQC uses

algorithms resistant to quantum attacks for secure authentication,

digital signatures, and encryption. Integrating quantum networks with

PQC ensures data integrity’and confidentiality, safeguarding against
ture quantum threatssand-advaneing-cyberseecurity.

Quantung Protocol:

Quantum Teleportation can be implemented by
the following process: Generating an entangled
pair of electrons with spin states A and B, in a
particular Bell state. Measuring bell state of A
and C(to be sent). Sending the measurement by
classical method of communication. Measuring
the spin of state B along an axis as determined
by the previous measurement.

Fig. 1: Quantum Teleportation circuit

Fig. 2: Quantum Flytrap Game

Conclgsion

Quantum Teleportation has immense potential
to significantly advance quantum communication
and computing. The essential elements include

quantum entanglement, the initialisation of the
state to be teleported, and a classical
communication channel.

References

1.IBM’s entanglement in action

2.Quantum Secure Communication: Unleashing Unbreakable
Connections: https://murshedsk135.medium.com/quantum-
secure-communication-unleashing-unbreakable-connections-
9e260f4db9cc

3.Quantum Teleportation within a Quantum Network, Hari Prakash,
Ajay K Maurya and Manoj K Mishra

4.The Applications and Challenges of Quantum Teleportation:
https://iopscience.iop.org/article/10.1088/1742-
6596/1634/1/012089/pdf

5.Andy Matuschak and Michael A. Nielsen, “How Quantum
Teleportation Works”, https://quantum.country/teleportation, San
Francisco (2019)
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SPOTIFY MUSIC RECOMMENDATH}N SYSTEM (" sowowwsosewent

I would like to thank my mentors Dr.

Gerhard Hellstern and Dr. Filip Bar
US'NG GUANTUM MACHINE LEARNING T al thei help an th projec, | would
also like to thank all team members and
- students of PhysicsBeyond
(ThinkingBeyond) and Girls in
Resea Student: Roshani Vijayan Quantum for their unwavering support.
Mentor : Dr. Gerhard Hellstern, Professor, Duale Hochschule Baden-Wirttemberg, Germany

Disclaimer : ‘Sptify’ name, brand ogo owned by Spotify Technology S.A., Sweden and not used here for any commercial purpose or gain.
WAVAVAVAV AV,
I
01. INTRODUCTION 03. DATASET

Spotify, the world's largest on-demand music service, Dataset : In this project, a dataset comprising
is best known for its user experience, music 1200 songs mapped to users' personal traits
recommendation that is constantly getting improved. was utilized. The file includes features of
Spotify tracks along with corresponding labels
that indicate user preferences

05. QUANTUM ML ALGORITHMS

The code uses a hybrid quantum-classical machine learning approach, specifically leveraging quantum circuits within a
neural network framework. This involves the following components:

Quantum Circuits: Each data sample is encoded into a quantum circuit.

Parameterized Quantum Circuits (PQCs): These circuits have trainable parameters that can be optimized during
the training process.

Quantum Layers in TensorFlow Quantum: The quantum circuits are integrated into a TensorFlow Keras model
using TensorFlow Quantum, which allows quantum circuits to be used as layers in a neural network.

02. GBJECTIVE
04. PRE-PROCESSING
This project aims to apply Quantum Machine Learning

(QML) techniques to predict Spotify user preferences. Data Preparation : Features from the dataset

Acoustic
Features

Session 1

Leveraging quantum computing can potentially are standardized and reduced in dimensionality . Track 1
Session 2
enhance the efficiency and accuracy of machine using PCA. The features are scaled to fit the cssion us PRGCESS BHEAKBGW
learning models in handling large and complex Spotify range (-, m) for compatibility with quantum
music and users datasets. circuits. Track 10
quantum circuit, where each feature controls the rotation of a qubit.

Track 11

Quantum Model Training: The encoded circuits are fed into a Parametric
Quantum Circuit (PQC) integrated within a neural network framework.
Through training with labeled data, the model acquires the ability to
differentiate between songs suitable for recommendation and those that are
not.

Acoustic
Features

Session 130m

i
'
'
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: Quantum Circuit Encoding: Each song's features are converted into a
'
'
!
!
!
!
!
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Quantum Neural Networks Model
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(per user) (per session) Features (per track)

— Predicti di

The same prep g and ding p are applied
to new or test songs. Subsequently, the trained quantum model predicts the
recommendation score for each song based on its learned parameters.

07. RESULTS/CONCLUSION

The prediction model outputs a range of values for each input data point,
spanning from negative to positive. These continuous values in the output

—

ion: The predicted scores undergo analysis. Songs receiving
high positive scores are deemed strong recommendations, which can then be
suggested to the user based on their preferences and listening history.

—_

array rep! the model's dations for the test data:
* Positive Values: Values approaching 1 suggest strong
recommendations. 08 REFEHE“CES
n * Negative Values: Values nearer to -1imply weak or no
L recommendation. o Hurtado, A., Wagner, M. and Mundada, S., 2019. Thank you, Next: Using NLP
To provide actionable recommendations, the model can filter predictions Techniques to Predict Song Skips on Spotify based on Sequential User.
using a threshold (e.g., d only pred above 0.8 as strong « Gori, M., & Pucci, R. (2020). Quantum Algorithms for Recommender Systems.
A recommendations). IEEE Transactions on Quantum Engineering.

« Tang, E., 2019, June. A quantum-inspired classical algorithm for fati

systems. ACM SIGACT symposium on theory of computing (pp. 217-228).
« Pilato, G. and Vella, F., 2022. A survey on quantum computing for
Jation systems. Information, 14(1), p.20.
« https://www.tensorflow.org/quantum/concepts
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INTRODUCTION 4  MODELING ar 7 CONCLUSION

This research poster explores Quantum Teleportation (QT), its applications, and its . . . . "
qubity « Alice is the sender and her qubits are Unlike the teleportation depicted in movies

qubits 0 and 1.

qubity ' « Qubit 0 is the qubit state that will be does not involve the physical transfer of
objects. Instead, it is based on transferring

secure implementati
such as Star Trek, quantum teleportation

Quantum Teleportation, a process in which a quantum state is transferred from one

location to another without traveling through the intervening space, relies on two
qubit; teleported.

fundamental phenomena: Quantum Entanglement and Bell State Measurement.
« Bob is the receiver and his qubit is quantum information between entangled

Classical bit = qubit 2. particles.

« Quantum entanglement occurs when two or more quantum particles become

interconnected, and the measurement of one particle's properties instantly affects
« Qubits 1 and 2 (one from Alice and the other from Bob) are entangled by H and CNOT gates. Quantum Teleportation advances the fields

« Qubit 0 (state to teleport) and 1 are entangled by CNOT and H gates (identity). of quantum computing, cryptography, and
networking. Moreover, when performed with

the other (if one particle has spin 'up’, the other instantly has spin 'down').

« Bell States are quantum states where two particles are maximally entangled. They are
created by applying the Hadamard (H) gate and the CNOT gate, resulting in exactly

01) + |10)

 Alice measures qubits 0 and 1, and sends the results to Bob (owner of qubit 2).

« Based on the measurement results from Alice, Bob applies the unitary transformation (X and Z optical fibers, even over kilometers apart, it

four distinct Bell States. \
o |00) + |11) demonstrated that teleportation allows the

/2

]\Il*\, = gates).
If the measurement result is 00, no additional operation is needed. SR WENBIIEEID ¢ i lieeien.

‘q) >: M J‘I’ B = 5 GRAPHICAL RESULTS

NG ® © 000 © 00 0 00 0000

In the final measurement of quantum

-~

=
2 E91PROTOCOL 8 REFERENCES

teleportation, there are only four possible

In the E91 protocol for security in quantum communication, multiple entangled particles states (Bell States). Each of these states « Nature Reviews Physics. (2003). Progress in
are generated at a source and then distributed to Alice and Bob. Both of them measure should have a 25% probability of occurring. quantum teleportation. Nature Reviews
the spin of their particles in three different directions (Alice in directions 0, 1/8, /4, and Physics.

Bob in directions -/8, 0, i/8). Then, they communicate the measurement bases used

for the qubits and categorize the results into two groups, A and B:

Nevertheless, errors can occur and affect
. . . « National Science Foundation (NSF). (2020). Is
the accuracy of real-life communication ) ) )
teleportation possible? Yes, in the quantum
world. NSF.
« Journal of Physics: Conference Series.

(2020). The Applications and Challenges of

due to factors such as hardware limitations
« Group A (the states do not match) - a Bell Inequality Test is performed to detect any

and the challenges of maintaining
interception.
« Group B (the states do match) - the data is used to build a secure key by encoding the

coherence.
. Quantum Teleportation
qubits (0 for down and 1 for up).
« Quantum Computing Group, IIT Roorkee.
(2021). Fundamentals of Quantum Key
Distribution — BB84, B92 & E91 protocols.

If no interception is found in the group A data, then the data from group B is used to A
create a secure key. If interception is detected, the protocol is repeated.

In this model of the Quantum Flytrap, an .
« QuantumFlytrap. (2020). Quantum Teleportation

——

3 QUANTUM NETWORK

interactive game on quantum models, it

Teleported State

« Google Colab. (2024). Quantum Teleportation
Code
. LaTeX. (2024).

offers a representation of a quantum

In 2016, China achieved quantum teleportation by connecting two laboratories located teleportation circuit.

30 kilometers apart using optical fibers. Scientists created pairs of entangled photons

This model shows Alice's and Bob's

in laboratory A and successfully transmitted them through the optical fibers to entangled pair of particles, as well as Acess it to

laboratory B. Alice’s qubit 0 (orange element) that will see our QT

be teleported to Bob.

This demonstrated the security of quantum teleportation for communication over long

distances, which is crucial for the development of quantum internet networks, promising

the advancement in secure information.
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Quantum computers excel at solving certain problems
exponentially faster than classical computers. Grover's
algorithm exempilifies this potential, offering efficient
search capabilities for unstructured databases. This
research project explores Grover's algorithm's advantages
over classical search methods, introducing quantum
computing basics and the principles underlying the
algorithm. It delves into the mathematical formulation
and time complexity analysis, demonstrating a quadratic
speedup compared to classical search algorithms. This
breakthrough highlights the transformative potential of
quantum computing in tackling complex computational
challenges.

2.Algorithm Steps

N-1
1
L. Initial state: |s) = HZ"|0)" = — Y~ |z)
N =0

2. Oracle:  Olx) = —|z) if z is a solution, |z) otherwise
3. Diffusion: D = 2|s)(s| — I

4. Iteration: G =D-0
™ [N
5. Final state: =G"s TR ——
5. Final state: |¢y) = G"[s), = 4”M

3.Comparison

Grover's algorithm offers a quantum approach to
searching unstructured databases, achieving a
quadratic speedup over classical methods. It finds
items in approximately VN steps, compared to N
steps classically, by using superposition and
interference. The algorithm iteratively applies Oracle
and Diffusion operators to amplify the target state.
While not a universal solution, it demonstrates
quantum computing's potential to outperform
classical systems in specific tasks, particularly
unstructured searches. This breakthrough opens
doors for applications in various fields and catalyzes
further quantum algorithm development.

Number of Oracle Calls

- |

o) Oracle || Average™ |—
—{1}

= =

1) fan Pany
A\ U

selective inversion

I'_ inversion _'I |‘— about

average

Grovers Algorithm
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Under the supervision of Vanessa D.

Comparison graph

Theoretical Efficiency of Grover's Search Algorithm
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1. Drug Discovery: Accelerating the search for potential
compounds in vast chemical libraries, significantly impacting
the development of new medications.

2. Supply Chain Optimization: Streamlining the search for optimal
routes and logistics solutions in complex supply chain networks,
potentially saving time and resources.

3. Database Search: Quickly finding specific records in large
unstructured databases.

4, Cryptography: Speeding up the brute-force search for
cryptographic keys, which is relevant for cracking cryptographic
systems and testing their security.

5. Optimization Problems: Enhancing the efficiency of solving
various optimization problems by searching through potential
solutions more rapidly.

5.Conclusion

Grover's algorithm is a quantum computing
breakthrough that demonstrates the potential to
outperform classical approaches in certain tasks. By
leveraging superposition and interference, it achieves
a quadratic speedup in searching unstructured
databases. Grover's algorithm has practical
implications across various industries and serves as a
catalyst for further research and innovation in
quantum algorithms, promising to tackle complex
problems with unprecedented efficiency and shape
the future of computation.
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SPOTNIFY MUSIC
RECOMMENDATION

Today, Spotify has one of the most advanced recommendation
algorithms present on the market. it gathers data From the
experience of al users (Colaborative Fitering) and From
andlyzing raw-oudio and textual data extracted from the tracks
themselves (Content-based Filtering and  Natural
Processing).

instead of using clossical Moachine Learring the oim o
research project wos to make a recommendation
a Quantum Neural Network. The motivation behind

17

The main objective of this project was to create a GNN for sSpotify's music recommendations that is

based on persondiity traits. We implemented a dataset which connected certain characteristics
obtained through the Big Five persondlity test to respective song traits Spotify considered This
persondlity test was chosen due to its simplicity (compared to other considered options), popularity
and availdbiity of reqired data

The algorithm was written using the Python programming language. Prior to writing the code,
necessary modules were installed. This included general-use libraries, such as NumPy For mathematical
operations, Pandas formanipulating dataframes and scikit-Learn for utiizing ML-speciic functions.
Qiskit, a modue specidized For running quantum computing algerithms (or, more precisely, for
simulating quantum circuits) on classical computers, wos adlso used

2. Principal component

First, the number of processed comporents was
extraction

test  the quantum odvan+aﬁe = exponenhally

capacity, Faster learning better perfo

rumber of qurons, higher information proc

reduced using a PCA algorithm The mechanism behind
the PCA dlgorithm is explained on the Figure I in simple
terms.

The next step was encoding data into the quantum
state. This was done through the anguar encoding
method, by using the Ry-gates.

To achive quantum parallelism, the qubits were put into
the state of superposition. This was done by applying
on Hgate to the qubits. Theoretically, this was
supossed to endble us to oacquire the abiity to

perform multiple calculations at once

After all operations on the qubits have been
performed measurements have been conducted
and results obtained

Principal
z Component
Analysis
n

4. Size reduction

Figure | PCA olgorithm diogrom (Belemans, A .
Aversono, G. Coussement, A, Porente, A 20k
Feature extraction from principal component analysis
bosed  reduced-order models using  orthogonal
rotation)

RESULTg

Based on Persondlity Traits

A DISCUSSION

The main purpose of this project was to

it is important to state that the code from which our results
were obtained had many points that could have been optimized
As such they were not a relidble source of information by
themselves, but were interpreted in comparison to several
other relevant studies conducted on this topic

Nevertheless, despite all faults of the code, it was obvious to
conclude that there is, in facct, no sight of the theoretically

implement a Quantum Neural Network that
would return song recommendations as output
when given a certain persondlity type as input.
The results we obtaned were in allegnece
with other relevant work done in the Field

O futur, one of the posibble further steps
could include giving the GNN more training os

There are many aspects in which the algorithm might be improved.
These possibiities include: Finding a more optimal dataset (perhaps
even creating a dataset of our own), giving the GNN more training
(possibly increase the training dataset), optimizing improving the
Function that encodes classical data to quantum states, Also, Pnding a
more  sophisticated feature  selection technique  might brinﬂ
considerable benefits.

predicted quantum advantoge

One of the posibble implications of these results is that the GNN
needed more training The encoding method that was utiized

might also be malfunctioning

wel as Findng better Feature selection

procedures. Despite  the theoretical Predlchons, there is yet no trace of the
quantum odvantage. For now, the supremacy of quantum computing
has been spotted only in specific problems, such as complex
simulations of particles in the quantum redm For example At least
For now, there are no indications of Quantum Machine Learning
algorithms being better than their respective classical couters.

ThinkingBeyond
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The dataset that | have used, uses a
generalised version of Thayer’s
traditional model of mood:

The purpose of this research project is to build a
recommendation system for Spotify songs using a Quantum
Support Vector Machine (QSVM) and compare its accuracy to
that of classical Support Vector Machine (SVM) to come to a
conclusion as to which one is best suited for this task.

The classical SVMs used for comparison are:
« A polynomial SVM
« A linear SVM
« A radial basis function (RBF) SVM
« A sigmoid SVM

It includes the 4 basic moods: Happy, Sad, Calm, Energetic
By analysis of mood and personality, where the big 5

personality traits are:

Openness to Experience: Imagination, creativity, and

curiosity.

Conscientiousness: Organization, dependability, and discipline.
Extraversion: Sociability, assertiveness, and excitement-seeking.

Agreeableness: Trust, altruism, and cooperation.

Neuroticism: Tendency towards emotional instability and

negative emotions.

| noted that the mood ‘sad’ corresponds to higher neuroticism and lower extroversion, the
mood ‘happy’ corresponds to higher extroversion and agreeableness, the mood ‘energetic’
corresponds to higher extroversion and openness, the mood ‘calm’ corresponds to higher
agreeableness, conscientiousness and lower neuroticism.

Therefore:

Sad music: Preferred by individuals high in neuroticism.

Happy music: Preferred by individuals high in extraversion and agreeableness.
Energetic music: Preferred by individuals high in extraversion and openness.
Calm music: Preferred by individuals high in agreeableness and conscientiousness

18

lo1[[[ 1 The mode

The QSVM uses classiq’s construct_qsvm_model, synthesize
and execute functions to create the QSVM. The QSVM uses a
Second-order Pauli-Z evolution encoding circuit. The model
uses a quantum kernel that employs a specific quantum feature
map:

#(x) = exp(iax’ Px)

where: P = o, ® o,(Pauli ZZ matrix), The kernel is calculated as:

k(xi, x5) = (p(x:), #(x;))

capturing the inner product of the quantum states
transformed by ¢(x;) and ¢(x;).

Unlike classical kernels (e.g., linear, polynomial, Gaussian), this
quantum kernel operates in the quantum Hilbert space, leveraging
quantum states and operations.

Therefore the Pauli ZZ quantum kernel is tailored for quantum
SVM applications, where it harnesses quantum computational
principles to potentially enhance the classification of emotional
states based on music data.

6

A recommendation function then retrieves and suggests songs that
were classified under the chosen emotional category by the
QSVM, providing personalized music selections based on user
preferences. This approach enhances music exploration by
automating tailored recommendations through quantum-enhanced
classification techniques.
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° Carin Samer
Quantum Computing Concepts Aya Ahmed

with Qubit Manipulation (2A)

Abstract | Methodology of Working of a Quantum Computer

F elt den devi ST
Eiatcce N 1 Quantum Bits 2 Quantum Gates

computers,to SUPEVCO_mPUtSFS, Quantum bits (qubits) lie at the heart of Fundamental operations to manipulate
physics and computation have i v a qubits, they can be unitary as Pauli gates

always been intertwined due il quantu:ﬁt.comlputlng, prom|smgd ixpo:wenfm{ and represented by unitary matrices or
to the use of physical systems ! = computationat power Comparec to classica non unitary as measurement. Applying
in encoding information. bits, with a two-state (or two-level) quantum- . .

. mechanical svstem. Unlike bit bits can b them corresponds physically to applying
Recently, the focus has shifted ? i S SSIalea RYEiel 9 BILE S AIIES G B microwave signals or others to control
towards utilizing the quantum ‘ ; superposed until measured which gives the qubit state.
aspects of physical systems to | quantum  computers  the  exponential
perform computations. This 1 computational power.
approach offers significant

benefits, despite th Ly
csaﬁer:;esiigsirteitiu — P 3 Qubit Manipulation 4 The Bloch Sphere

y The significance of the Bloch sphere
[P Google’s Quantum Computer Qubit manipulation involves precise control over their

« » ; - i lies in obtaining presice visualization of
Sycamore quantum states, enabling operations such as superposition, . .
entanglement, and gate transformations. Researchers explore a qubit state and spotting errors ,where
techniques like laser pulses, microwave fields, and magnetic the two north and south poles of the

O resonance to manipulate q.ubits. These advancements p.ave block represent the zero and one states
I ntrod uctlon the way for quantum algorithms, quantum error correction, and every other point of the sphere
and quantum supremacy. .
corresponds to a superposition state.
When the first world quantum computer, Sycamore, was found,

Google claimed its ability to compute faster than the fastest

supercomputer, summit, by approximately 10000 years! Quantum 5 Mathematical Underpinnings 6 Conclusion

computing is a research area that extends the set of physical laws . . .

classical computers operate on by accessing the quantum aspects of a Of Quantum Comp”“"g Ee.splttehthfe :echn::cal c:tal:nge; astiua:tlljc:n
physical world, opening up new ways of processing information. The Mathematically, qubit is assumed to be a vector in si‘;l:i?ca:t upl,'l’;emc;sequaan: pcootenptliiall gac(r)os:
need for a quantum computer stems from the inability of classical Hilbert space having a general state: [¢)) = «|0) + §|1) various fields and with continued research
computers to solve “complex problems” as transistors can no more , where |oz|2 + |B|2 = lwhich is known as Borne’s ‘

. . L : . . ) ) . trans formative advances in quantum
continue doubling and minimizing coupling with Moore's law. Rule , which d.oes not change by applying any unitary computing capabilities over the coming
gate to a qubit as shown: s will Qe

Tools and Experiments

Using the IBM Quantum Composer , Qiskit
and Pennylane, several experiments that
consolidates the discussed concepts were
conducted.

of i) Ry RN .

Scan for experiments! Scan for references!
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Developing a Predictive Model Using QML for Forecasting Best-Selling

Mobile Phones
Boutheine Teyeb and Sara Barthel de Weydenthal

Quantum model

The quantum model encodes mobile phone features
into quantum states using cmg|e embeddings and
processes them through a variational quantum
circuit with entangling layers. This circuit,
parameterized by trainable weights, captures
complex patterns in the data. Measurements of the
quantum states are then passed to a classical neural
network layer to make predictions, leveraging
quantum computing's advanced data
representation capabilities.

——— Training Loss
Validation Loss

/> Abstract
This project uses Quantum Machine Learning (QML) to
improve prediction accuracy by analyzing data from

specifications, user reviews, and market trends.

QML leverages quantum computing to create a
superior predictive model, uncovering hidden patterns
and non-linear correlations in complex data, thereby

offering better market insights and predictions.

Method

1. Data Collection: Used Kaggle's dataset on best-
selling mobile phones, including specifications, user
reviews, and sales data.

2. Quantum Feature Mapping: Encoded data features
into quantum states to capture complex relationships.
3. Model Development: Created a hybrid classical-
quantum model with TensorFlow and PennyLane,
integrating a variational quantum circuit into a classical
neural network.

4. Training and Evaluation: Split data into training and
testing sets, normalized it, and trained the model using
Mean Squared Error (MSE) for evaluation.

£

H AN
Classical model @3

NS

(O

The classical regression model predicts mobile
phone sales by applying a linear combination of

input features, including one-hot encoded
manufacturer data. Each feature is weighted, and
the model includes a bias term. During training,
weights are optimized to minimize the prediction
error using gradient descent, enhancing the

model's accuracy.

Sales vs Manufacturer
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